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Consider the task of selecting a medical test to determine whether a patient has a particular
disease. Normatively, this requires taking into account (a) the prior probability of the disease,
(b) the likelihood—for each available test—of obtaining a positive result if the medical
condition is present or absent, respectively, and (c) the utilities for both correct and incorrect
treatment decisions based upon each possible test result. But these quantities may not be
precisely known. Are there strategies that could help identify the test with the highest utility
given incomplete information? Here, we consider the Likelihood Difference Heuristic
(LDH), a simple heuristic that selects the test with the highest difference between the
likelihood of obtaining a true positive and a false-positive test result, ignoring all other
information. We prove that the LDH is optimal when the probability of the disease equals the
therapeutic threshold, the probability for which treating the patient and not treating the patient
have the same expected utility. By contrast, prominent models of the value of information
from the literature, such as information gain, probability gain, and Bayesian diagnosticity, are
not optimal under these circumstances. Further results show how, depending on the
relationship of the therapeutic threshold and prior probability of the disease, it is possible
to determine which likelihoods are more important for assessing tests’ expected utilities.
Finally, to illustrate the potential relevance for real-life contexts, we show how the LDH
might be applied to choosing tests for screening of latent tuberculosis infection.
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In medical diagnosis, as in many other do-
mains, it is rarely possible to obtain all potentially
relevant information before deciding what course
of action to take. Nonetheless, a limited number
of carefully chosen tests can greatly facilitate
diagnosis and treatment. But how should these
tests be selected? When the relevant probabilities
and utilities (i.e., benefits and harms of diagnostic
decisions associated with tests’ outcomes) are
fully known, the utility-maximizing test can be
determined using Bayesian decision theory
(Savage, 1954). Outcome-based (or situation-
specific) utility functions measure the extent to
which an agent values the outcomes of actions,
for instance, the benefits and harms associated
with correct and incorrect treatment decisions. In
practice, such utility functions can be derived
from objective measures (e.g., monetary costs),
subjective measures (e.g., side effects experi-
enced by a patient or treatment benefits and harms
as judged by doctors; Christensen-Szalanski &
Bushyhead, 1981), or amix of both (e.g., quality-
adjusted life years; Weinstein et al., 2009). In this
article, when we speak of utilities, unless denoted
otherwise we mean such outcome-based, nonin-
formational, utilities. Accordingly, the expected
utility gain of a test refers to the average improve-
ment in noninformational outcome-based utility.
The best test is defined as the test that among
available tests maximizes expected utility gain,
given the applicable utility function.

While mathematically straightforward, this
kind of analysis faces two challenges in real
diagnostic situations. First, from a descriptive
point of view, people may have difficulty weight-
ing all probabilities and utilities and acting accord-
ingly. This raises the question of how people
intuitively evaluate tests and to what extent their
test-selection strategies are sensitive to normative
principles. Second, a precise quantification of
appropriate utility functions is often challenging.
Difficulties include measurement issues and com-
parability of subjective valuations, incommensu-
rability of different metrics, and diverging views
on treatment benefits and harms among multiple
stakeholders (e.g., patients, health care providers,
policy makers). Thus, attempts to derive appro-
priate utilities for evaluating medical tests are both
important and notoriously difficult.

One proposal to circumvent these difficulties is
to evaluate medical tests using epistemic (or pure
information) utility functions (Benish, 1999,
2003; Good & Card, 1971). Such utility functions
are also sometimes called Optimal Experimental
Design (OED; Nelson, 2005) or Optimal Data
Selection (Oaksford & Chater, 1994) models of
the value of information. Epistemic utility func-
tions consider the probabilities of diseases and
test outcomes but disregard any further utilities
associated with subsequent treatment decisions.
Within this perspective, test selection should be
determined solely by tests’ ability to reduce
epistemic uncertainty about the true state of
nature, such as whether a patient has a particular
medical condition or not. Information gain
(Lindley, 1956), which is based on the expected
reduction in Shannon’s (1948) entropy, Bayesian
diagnosticity (Good, 1950; Good & Card, 1971),
and probability gain (Baron, 1985; Baron et al.,
1988) are examples of epistemic utility functions.

Under what conditions—if any—can pure-
information test-selection strategies identify the
highest utility test? We analyze the Likelihood
Difference Heuristic (LDH; Slowiaczek et al.,
1992), a simple strategy that is applicable to
the selection of binary tests (e.g., medical tests
that can have only positive or negative outcomes)
in a binary hypothesis space (e.g., disease vs. no
disease, where the possible actions are to treat or
not to treat the disease). The LDH requires only
two pieces of information for each test, namely
the likelihood that the test is positive when the
disease is present (the true positive rate) and the
likelihood that the test is positive when the dis-
ease is absent (the false positive rate). Both
quantities are typically available for routine med-
ical tests. The LDH then deterministically selects
the test with the highest likelihood difference,
ignoring any further available information, a
feature shared with other heuristics from the
judgment and decision-making literature
(Gigerenzer & Gaissmaier, 2011). Because of
its simplicity, the LDH can be used even when
the prior probability of the disease or the
outcome-based utilities are completely unknown.
Of course, the fact that the LDH can be used does
not demonstrate that the LDH—or any
heuristic—would be sensible to use in any
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particular test-selection situation. Theoretical
analyses (Nelson, 2005) show that the LDH
invariably selects tests in accordance with impact,
an epistemic utility function that quantifies belief
change as the average absolute difference from
prior to posterior probabilities. However, the
LDH has not yet been studied with respect to
outcome-based utility functions.

Human Inquiry and Test Selection

Carefully deciding which information to
acquire is a central ability in many domains. Early
research on how humans intuitively select queries
was inspired by Popper’s (1959) philosophy of
science and the idea that one should seek out
potentially disconfirming evidence (Wason,
1966, 1968). More recent approaches conceptu-
alize human query selection as probabilistic
inductive inference, where the goal is not to
obtain potentially disconfirming information
for a single hypothesis, but rather to acquire
information in order to discriminate among mul-
tiple hypotheses (Coenen etal., 2019; Crupi etal.,
2018; Gureckis & Markant, 2012; Mederet al., in
press). This approach, sometimes referred to as
the OED framework, has theoretical roots in
Chamberlin’s (1890) Method of Multiple Work-
ing Hypotheses, with instantiations in informa-
tion theory (Lindley, 1956; Shannon, 1948),
Bayesian philosophy of science (Good, 1950),
and automatic Bayesian experiment design
(Myung & Pitt, 2009).

In the cognitive and decision sciences, OED
models are widely used as normative benchmarks
against which human information acquisition can
be considered. Domains studied include hypothe-
sis testing (Austerweil & Griffiths, 2011; Crupi
etal., 2009; Oaksford & Chater, 1994); eye move-
ments for perception (Najemnik & Geisler, 2005),
concept formation (Nelson & Cottrell, 2007), and
reading (Legge et al., 1997); categorization
(Markant & Gureckis, 2014; Nelson et al.,
2010); causal induction (Bramley et al., 2015;
Steyvers et al., 2003); the neural value of obtained
or expected information (Filimon et al., 2020;
Nakamura, 2006); eyewitness identification
(Wells & Lindsay, 1980); medical diagnosis
(Baron et al., 1988; Benish, 1999); and children’s
behavior on 20 questions games (Meder et al.,
2019; Nelson et al., 2014; Ruggeri & Lombrozo,
2015). Most of this work (Coenen et al., 2019)
suggests that at least to a first approximation, the

OED framework provides a good basis for under-
standing human behavior. It is important to
remember, however, that in all of the above tasks,
the goals are purely epistemic, and the OED
models employed disregard any benefits and
costs associated with subsequent decisions based
upon the obtained information.

However, in many domains such as medical
diagnosis, the goals of the searcher are not purely
epistemic. Rather, information acquisition is a
means to an end, for instance, to decide about
alternative medical treatments based on a test
outcome. From a normative perspective, in
such cases, the outcome-based utilities, and not
only the informational value of tests, should be
considered in test selection (Schlaifer & Raiffa,
1961). This is important because optimizing a
particular epistemic utility function (e.g., using
information gain or probability gain to select
tests) will not necessarily identify the test with
the highest utility gain, given the applicable re-
wards and costs (Markant & Gureckis, 2012;
Meder & Nelson, 2012).

Can people adapt their test-selection strategies
to different kinds of reward structures? In com-
parison to the great deal of research on human test
selection in tasks where the goals are purely
epistemic, little is known about people’s ability
to consider outcome-based utilities in informa-
tion acquisition. It is important to note that in
Signal Detection Theory (Green & Swets, 1966),
there is a rich body of theoretical work on how
expected reward should be considered when
making classification decisions. Many experi-
ments have investigated the -circumstances
under which people can adapt their decision
thresholds to the rewards and costs associated
with different categorization decisions (e.g.,
Maddox, 2002; Maddox & Bohil, 1998, 2003;
Trommershauser et al., 2003a, 2003b). However,
that work investigates the decisions that are made
after information is at hand and does not address
the questions about whether, or how, people take
outcome utilities into account when selecting
tests to conduct. Below, we briefly review three
articles that do address human test selection given
outcome-based utilities.

Baron and Hershey (1988) used hypothetical
medical diagnosis scenarios. Test selection was
broadly sensitive to relevant variables, such as the
varying costs of false-positive versus false-
negative errors, but also showed deviations
from normative principles. Choices of tests often
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reflected utilities qualitatively, for instance, in a
preference to select tests that minimized the most
harmful kind of errors.

Meder and Nelson (2012) used a probabilistic
classification task, where experience-based learn-
ing was used to convey the relevant probabilities.
In a subsequent search phase, participants had to
choose between two queries before making a
categorization decision. Varying monetary re-
wards were associated with different kinds of
correct classification decisions; for instance, a
correct Category A classification may have been
worth 10 times as much as a correct Category B
classification. The test that maximized classifica-
tion accuracy was in these cases different from the
test that maximized average payoffs. Participants’
test-selection strategies were influenced by the
applicable payoffs during the learning phase.
However, if the payoffs were changed for the
test phase, participants were not able to take this
into account. Moreover, if probability information
was conveyed using words and numbers, rather
than experientially, neither utility gain nor proba-
bility gain could explain test-selection behavior.

Markant and Gureckis (2012) also studied
search under situation-specific reward condi-
tions, where participants had to identify different
shapes on a game board by sampling targets on a
grid. Their task involved both test costs (i.e.,
sampling itself was costly) and costs for specific
kinds of errors. The task was designed in such a
way that there was a conflict between obtaining
information to minimize overall costs and select-
ing queries in accordance with information gain.
In two experiments, searchers’ behavior was
better accounted for by information gain than
utility gain, lending support to the hypothesis
that people often focus on reducing epistemic
uncertainty even if situation-specific utilities
apply. Thus, the psychological literature to
date, sparse though it is, suggests that people
have at best very limited ability to use task-
specific payoff structures into account when
choosing which tests to conduct.

The LDH, known also as the feature-difference
heuristic (Nelson, 2005) has to our knowledge not
yet been studied, either theoretically or empiri-
cally, in medical test selection or other domains
with outcome-based utilities. However, behaviors
consistent with the LDH have been reported in
various experimental tasks with purely epistemic
goals. One such task is the Planet Vuma scenario,
in which participants have to rate the usefulness of

a set of binary-outcome features in order to cate-
gorize fictitious aliens into one of two species
(Nelson, 2005; Skov & Sherman, 1986;
Slowiaczek et al., 1992). Another task involves
more naturalistic crime scenarios, in which parti-
cipants select one of two queries they find most
useful for an investigation (Liefgreen et al., 2020).

The use of likelihood subtraction has also been
documented in the literature on belief revision. In
particular, it is a nonnormative strategy that can
lead to base rate neglect (e.g., Domurat et al.,
2015; Gigerenzer & Hoffrage, 1995; McDowell
etal., 2018). Both laypeople and physicians have
been reported (Hoffrage & Gigerenzer, 1998) to
estimate the positive predictive value of diagnos-
tic problems by computing the difference
between the sensitivity of a test, P(e|h), and
the false-positive rate of the test, P(e|-h). The
likelihood subtraction algorithm is also a promi-
nent model in covariation assessment (often
referred to as AP model), both in the Bayesian
confirmation framework, where it represents a
specific measure of evidential support (Nozick,
1981), and in the causal induction literature,
where it corresponds to the probabilistic contrast
model (Cheng & Novick, 1990).

To summarize, use of likelihood differences
have been observed in empirical research on test
selection, belief updating, covariation assess-
ment, and causal induction. This suggests that
the likelihood difference is a signal that people
could use in a wide range of circumstances. In this
article, we explore the circumstances, in situa-
tions with outcome-based payoff utilities, under
which it could be sensible (or not) to use the LDH
when choosing among binary tests to conduct.

Goals and Scope

We provide a formal analysis of the LDH as a
strategy for selecting tests in situations where
outcome-based utilities apply (e.g., medical diag-
nosis). We focus on the simplest possible test
selection scenario, which is characterized by the
option to conduct one binary test (i.e., a test that will
have a negative or positive result), after which it is
necessary to decide which course of action to take
(i.e., to treat a patient or not). We use a simple
medical diagnosis scenario to explain our mathe-
matical results. However, our results apply without
loss of generality to all situations with binary tests,
hypotheses, and decisions. An analogous situation
would be deciding what piece of information is
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most important for deciding whether an accused
person is guilty or not guilty, in criminal law.

Our analyses are based on mathematically
well-defined probabilities and utilities. What util-
ities are appropriate for a given situation or for a
particular person (e.g., a patient or a doctor) is an
important question, but is not part of our analyses.
Similarly, we will not take into account the costs
of the tests per se, but only the outcome-based
utilities resulting from correct or incorrect treat-
ment decisions. Nor will we consider the implica-
tions of planning a sequence of tests, although the
best first test in a sequence can be different from
the best single testif just one test can be conducted
(Geman & Jedynak, 2001; Hyafil & Rivest, 1976;
Meder et al., 2019; Meier & Blair, 2013; Nelson
et al., 2018).

The following sections of this article are struc-
tured as follows:

¢ In “Determining the Expected Utility Gain
of a Test”, we introduce relevant definitions
and illustrate how to compute a test’s
expected utility, given the applicable prob-
abilities and utility function.

* In “Utilities Influence Tests’ Relative Value
Only via the Therapeutic Threshold”, we
then show that an outcome-based utility
function influences tests’ relative utility
only via a single number, the therapeutic
threshold. Introduced by Pauker and
Kassirer (1975), the therapeutic threshold
is the probability of disease above which the
best (utility-maximizing) course of action is
to treat a patient and below which the best
course of action is not to treat.

¢ In “Analytic Results on the Likelihood Dif-
ference Heuristic”, we analyze the LDH
mathematically. We prove that, whenever
there is maximal need for information, the
LDH is guaranteed to select the test with the
highest expected utility. The condition of
maximal need for information applies when
the probability of the disease equals the
therapeutic threshold, such that a utility-
maximizing decision maker would be indif-
ferent among the available actions (i.e., to
treat or not to treat). Further analyses apply
to situations where the prior probability of
disease and the therapeutic threshold are not
equal. We show analytically that depending
on whether the probability of disease is
above or below the threshold, the utility

of a test is either a function of the likelihood
of obtaining a positive test result given the
presence of the disease (the test’s sensitiv-
ity) or of the likelihood of obtaining a
negative test result given the absence of
the disease (the test’s specificity).
* In “The Bigger Picture: Simulation Results
and Test Selection Based on OED Models”,
we show via counterexamples and simula-
tions that prominent OED models are sub-
optimal under conditions of maximal need
for information. We also show that the LDH
is reasonable to use somewhat beyond these
conditions, given that its performance de-
grades only gradually as we move away
from the situation where the prior probabil-
ity of disease exactly matches the therapeu-
tic threshold. Interestingly, the situations in
which the LDH performs well highly over-
lap with situations in which the choice of
test to conduct especially matters.
In “A Real-World Example: Latent Tubercu-
losis Testing”, we consider the LDH in the
context of latent tuberculosis diagnosis. This
allows us to show the potential relevance of
the LDH to a real-life screening setting as well
as to discuss some limitations of our analyses.
¢ In the General Discussion, we conclude by
highlighting key issues for future research
on human information acquisition and test
selection.

Determining the Expected Utility
Gain of a Test

We next define our terminology and describe
how to calculate the expected utility gain of a test,
that is, how much utility can be gained on average
from carrying out the test, compared to making a
treatment decision without conducting the test.
This calculation is based on the prior probability
of the disease and the test characteristics (i.e.,
likelihood of obtaining a positive test result, given
that the disease is present or absent, respectively)
as well as the applicable outcome-based utilities.
We show that the utilities associated with differ-
ent kinds of correct and incorrect decisions influ-
ence a test’s expected utility gain only via a single
number, the therapeutic threshold (Pauker &
Kassirer, 1975), the probability of disease above
which it would be best to treat the patient, and
below which it would be best to not treat the
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patient, if no further information could be
acquired before deciding whether or not to treat.

Terminology

Table 1 gives an overview of the terms and
definitions that we use throughout this article. We
use the nomenclature of Bayesian decision the-
ory, but related terms and concepts are used in
other fields, in particular in the medical and Signal
Detection Theory literature.

Probability Model

Let H = {h, —~h} be a binary random variable
(hypothesis space) associated with a particular dis-
ease, where i denotes the hypothesis that a person
has the disease and =/ denotes the hypothesis that
she does not have the disease. The probability P(h)
is the prior probability of the disease, with P(=h) =
1 — P(h). We assume that 0 < P(h) < 1, meaning that
it is a priori uncertain whether the person has the
disease or not. Another term from the medical

Table 1
Terminology, Definitions, and Related Terms From the Medical Decision-Making and Signal Detection
Literature
Term Definition Explanation Related terms
Prior probability P(h) A priori probability of the disease being Base rate, prevalence of disease,
present (with P(=h) = 1 — P(h)) pretest probability
Diagnostic test E A test labeled such that a positive outcome e is
positively associated (if at all) with disease,
that is, P(hle) > P(h)and P(h|-e) < P(h)
Likelihoods P(e|n) Likelihood of positive test given disease True positive rate, sensitivity sens(E)
P(e|=h) Likelihood of positive test given no disease  False-positive rate, 1 — spec(E)
P(—elh) Likelihood of negative test given disease False-negative rate, 1 — sens(E)
P(=e|-~h)  Likelihood of negative test given no disease True negative rate, specificity spec(E)
Posterior probabilities  P(h|e) Posterior probability of disease given Positive predictive value
positive test
P(-hle) Posterior probability of no disease given
positive test
P(h|-e) Posterior probability of disease given
negative test
P(—h|-e)  Posterior probability of no disease given Negative predictive value

negative test

Likelihood difference ~ ME)

Difference in outcome likelihoods of a
diagnostic Test E, P(e|h) — P(e|-h)

Difference between the test’s true
positive rate and false-positive rate

Utilities Uy, Utility of treating a person with a true Utility for a “hit”
positive test
ug, Utility of treating a person with a Utility for a “false alarm”
false-positive test
Ug, Utility of not treating a person with a Utility for a “miss”
false-positive test
Us Utility of not treating a person with a true Utility for a “correct rejection”
negative test
Utility of test result u(e) Utility gained from a positive test result
u(—e) Utility gained from a negative test result

Expected utility of test eu(E)

Average utility gained from Test E. If eu(E) > 0,

then E is a useful test. The best test is the test
that has highest expected utility gain among

available tests.

Therapeutic threshold 7,

Probability above which treating the patient
has higher expected utility than not treating,

Threshold probability, decision
threshold

given the applicable utility function
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literature is the pretest probability, denoting the
probability of disease before a test is conducted. A
frequentist estimate for the prior probability of a
disease, absent any individuating information for a
particular patient, is the proportion of people in a
given reference class that have the disease, often
referred to as the disease’s base rate or prevalence.

We use E = {e, e} to denote a diagnostic test,
another binary random variable. We only consider
tests for which the outcome is probabilistic, that is,
0 < P(e) < 1and 0 < P(=e) < 1, which means that
there is some chance of a positive result and some
chance of a negative result. In our scenario, e
corresponds to a positive test result, and —e corre-
sponds to a negative test result. The test results are
labeled such that P(hle) > P(h) and P(h|-e)
< P(h). In other words, a positive test result
increases (or does not change) the probability of
the disease, while a negative test result decreases
(or does not change) the probability of the disease.
Thus, we do allow for nondeterministic yet unin-
formative tests, for which no test result changes the
probability of the disease.

The conditional probabilities of test results e
and —e under true states 4 and —h are the like-
lihoods. The two likelihoods involving positive
test results are P(e|h), the conditional probability
of a positive test result given that the disease is
present, and P(e|—h), the conditional probability
of a positive test result given that the disease is
absent. Frequentist estimates of these probabili-
ties are the proportion of people who have the
disease who obtain a positive test result (frue
positive rate) and the proportion of people who
do not have the disease yet nonetheless have a
positive test result (false positive rate) . In the
medical literature, the true positive rate is often
called the sensitivity of Test E, sens(E).

The likelihoods involving negative test
results are P(—elh), the conditional probability
of a negative test result given that the disease is
present, and P(—e|—h), the conditional probability
of a negative test result given that the disease is
absent. Frequentist estimates of these probabilities
are the proportion of people who do have the
disease with a negative test result (false negative
rate), and the proportion of people without the
disease who correctly obtain a negative test result
(true negative rate), respectively. In the medical
literature, the true negative rate is often called the
specificity of Test E, spec(E).

If we administer a Test E, we get a positive
test result e with probability P(e) = P(h)P(e|h)

+ P(=h)P(e|-h), and a negative test result —e
with probability P(—e) = P(h)P(-e|h) + P(—h)
P(=e|=h). The posterior probability of disease
given a positive test result, P(hle), and the
posterior probability of absence of disease
given a negative test result, P(—=h|-e), can be
calculated using Barnard and Bayes (1763/1958)
theorem, that is, P(h|e) = P(e|h)P(h)/P(e) and
P(h|-e) = P(—e|h)P(h)/P(—e). In frequentist
terms, P(hle) is the proportion of people with
positive results that actually have the disease, and
P(=h|=e) is the proportion of people with nega-
tive test results who do not have the disease. In
the medical literature, P(h|e) is often called the
positive predictive value, and P(—h|-e) the neg-
ative predictive value of the test.

Utilities

In many real-world medical situations, in addi-
tion to administering a test and then updating the
probability of the patient having the disease or not
(i.e., computing the posterior probabilities of
interest), a decision of whether or not to treat
the patient has to be made. Such a decision should
not depend on the probabilities alone but also on
the benefits and costs of the possible decisions,
the outcome-based utilities. If we combine the
two possible decisions, “treat” and “do not treat,”
with the two possible states, “disease present” and
“disease absent,” we have four different cases
(Table 2). The utility of a true positive outcome,
Uy, is the utility of treating a patient who has the
disease. The utility of a false-positive outcome,
ug,, refers to the consequences of treating a patient
who does not have a disease. The utility of a false-
negative outcome, ug,, refers to the consequences
of not treating a patient who has the disease.
Finally, the utility of a true negative outcome,
u,,, refers to the consequences of not treating a
patient who does not have the disease.

In actual medical decision-making, the numeric
utilities should be based on things like the discom-
fort and harms caused by a disease, its individual
and social consequences, costs of treatments, and
distress associated with possible side effects
(Djulbegovic et al., 2015). Thus, utilities can be
positive or negative. For instance, Christensen-
Szalanski and Bushyhead (1981) asked physicians
to estimate the utilities of each possible decision-
outcome combination for the case of pneumonia,
using a rating scale ranging from —50 (worst thing
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Table 2

Outcome-Based Utilities Assigned by a Sample of
Physicians for Treating Pneumonia (Christensen-
Szalanski & Bushyhead, 1981)

Decision Disease present Disease absent
Treat u, = 40 ugp = =26
Don’t treat up, = =22 Uy =41
Note. The numbers represent the assigned mean value for each

combination of pneumonia diagnosis and true state of nature, on
a scale from —50 (“worst thing I could do”) to +50 (“best thing T
could do”). These utilities give a therapeutic threshold 7, = (41 —
(=26))/[(41 — (=26)) + (40 — (=22))] ~ .52.

I could do) to +50 (best thing I could do). Table 2
gives the mean estimates.

These estimates illustrate specific relations
among utility functions in medical contexts. Typ-
ically, if a patient does have the disease, treating
the patient has a higher utility than not treating the
patient (u,, > ug, e.g., 40 > —22 in Table 2).
Similarly, if a patient does not have the disease,
not treating the patient typically has higher utility
than treating the patient (u,, > u, €.g., 41 > —26
in Table 2).

Iff (if and only if) both these conditions (u,, >
ug, and u,, > ug) hold, we will call a utility
function proper. If these conditions do not
both hold, we will call a utility function improper.
We will denote the utility function with a payoff

matrix of the form u = [Z"’ Zf”} , where the
‘fn m

positioning of the utilities corresponds to the
combination between the decision taken (treat
or not treat) and the true state (disease or no
disease) in Table 2. These ideas are graphically
illustrated in Figure 1.

Utility Functions and the Therapeutic
Threshold

The way in which utilities should affect behav-
ior from a normative perspective has been studied
in Bayesian decision theory (Savage, 1954),
medical decision-making (Djulbegovic et al.,
2015; Pauker & Kassirer, 1975, 1980), and Signal
Detection Theory (Green & Swets, 1966;
Stanislaw & Todorov, 1999; Swets, 1992). The
best decision is typically defined as the decision
that has the highest expected utility, given the
applicable utility function and the probability
model (including the prior probabilities and
any evidence that has been obtained). The

expected utility of treating a patient is given by
P(h)u,, + P(—~h)ug,, while the expected utility of not
treating a patient is given by P(=h)u,, + P(h)ug,.
Note that they are both functions of P(h), which is
the probability of the disease given everything
known to date, including any prior test results.
Figure 1 illustrates how various sets of underlying
utility values lead to lines with the expected utility
of treating or not treating, as a function of P(h).

The therapeutic threshold (Pauker & Kassirer,
1975), which we denote with ¢,, will be an impor-
tant concept in subsequent analyses. It is the
probability of disease for which treating the patient
has the same expected utility as not treating the
patient. If no further information could be obtained
before deciding whether or not to treat the patient,
the patient should be treated just in case the
probability of disease is greater than .. If the utility
function is proper, then the therapeutic threshold #,
can be identified by solving for P(h) in Equation 1:

P(h)u,, + P(=h)ug, = P(=h)u,, + P(h)us,, (1)

and setting the threshold 7, to this value, namely
to
Uy — U
t, = i Jp . 2)
(utn - ufp) + (utp - ufn)

But whatifitis not known whether a given set of
utility values constitutes a proper utility function?
To check whether a utility function is proper, the
utility values can be plugged into the right side of
Equation 2. If (u,,, — ugp)/[ (g, — ug) + (g, — 15,)1 >
1, as in the bottom-left panel of Figure 1, the utility
function is improper and it is always (up to a
possible tie) better to not treat, no matter
what the probability of disease is. If (u,, — ug,)/
[ — up) + (uy — ug)] <0, as in the bottom-
right panel of Figure 1, then the utility function is
improper and it is always better to treat. Although
improper utility functions may seem trivial math-
ematically, they could be relevant in real diag-
nostic contexts. Importantly, if the utility function
is improper, not only no single test, but no
possible combination of tests, could have positive
expected utility gain.

Expected Utility Gain of Tests

If the probabilities and utilities are given, then
it is possible to calculate the expected utility gain
of a Test E, denoted eu(E). This is the expected
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Figure 1
Examples of Utility Functions

(a) Proper utility functions

Up=+40, Up=—26, Up=-22, uy=+41, t,=0.52 Up=+3, Up=0, up=0, up=+1, t,=0.25

40+

n
o

Expected utility
<

—20

0+

0.0 05 10 00 05 10
Probability of disease P(h)

41- treat <@~ do not treat

(b) Improper utility functions

Up=—1, Up=t+4, Up=—6, Uy=+3, t=—0.25 Up=+3, Up=t2, Upp=+3, Up=+6, t,=1

Expected utility

|
I
'

6+

0.0 05 10 00 05 10
Probability of disease P(h)

41- treat <@ do not treat

Note. The top row illustrates two proper utility functions. The left panel is based on the
pneumonia-related utilities reported in Christensen-Szalanski and Bushyhead (1981), which
entail a therapeutic threshold of ¢, = .52. The right panel is based on arbitrary values entailing a
therapeutic threshold of ¢, = .25. These are proper utility functions because the slope of the
expected utility of the “treat patient” line is greater than the slope of the “do not treat” line, and
those lines intersect where 0 < P(h) < 1 on the x axis. The bottom row illustrates two arbitrary
improper utility functions, for which the best decision (up to a possible tie) does not depend on
the probability of the disease. In the bottom-left panel, treating the patient has higher utility than
not treating, irrespective of the probability that the patient has the disease. The “treat” expected
utility line has a higher slope than the “do not treat” line, illustrating that this is a necessary, but
not sufficient, condition for having a proper utility function. The bottom-right panel illustrates
another improper utility function, according to which it is always better to not treat the patient, up
to a tie if P(h) = 1.
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u
[”fp Usp

Upp Upp

} (e) = max[P(hl|e)u,, + P(—h|e)uy,, P(=h|e)u,, + P(h|e)uy,]

— max[P(h)u,, + P(=h)ug,, P(=h)u,, + P(h)uj,]. 3)

utility associated with making the utility-
maximizing decision after the test result is known,
minus the prior utility that could be achieved on
the basis of the prior probabilities and applicable
utilities alone (Meder & Nelson, 2012; Schlaifer
& Raiffa, 1961). Calculating eu(E) requires con-
sideration of the utilities associated with the two
possible test results. The utility of an individual
test result, u(e) or u(—e), is defined as the differ-
ence between the utility given the test result and
the utility without the test result, assuming that the
utility-maximizing decision (to treat or not to treat
the patient) is taken in each case:
(See above)

The utility of a negative test result e can be
defined in the same way by replacing e with —e in
Equation 3.

Accordingly, we can define the expected utility
gain of Test E as the sum of the utilities of the
possible test results e and —e, weighted by the
probability of each respective test result:

eur,  (E)=Ple)ur  +(e)
™" i

Upp Uy Upp Upp

p Upp
ufn U,

+ P(=e)u (me). @
o]

Note that not every diagnostic test increases
expected utility. Intuitively, a test that does not
change the probability of disease irrespective of
its result (i.e., P(h|e) = P(h|—-e) = P(h)), has no
informational value and zero utility gain. How-
ever, even if atest does provide information about
the probability of disease (i.e., P(h|e) # P(h)and
P(h|=e) # P(h)), it does not necessarily have
positive expected utility gain. If Test E has posi-
tive expected utility gain, that is, if eu(E) > 0, we
will call it a useful test.

Utilities Influence Tests’ Relative Value
Only via the Therapeutic Threshold

We next give three results that provide the
foundation for our subsequent derivations.

Result 1. Let H = {h, =i} be a binary hypoth-
esis space associated with a disease and let
E = {e, me} be a diagnostic test for H. Let u =
[”f" M be a utility function for H. Then the

Upn m
expected utility of E with respect to the utility
function u, eu(E), is equal to the expected
utility of E with respect to the utility function

u* = | O | which we denote by
0 Uy, — Ugy

eu®(E); that is, eu(E) = eu™(E).

The proof is given in the Appendix. The result
above essentially says that the expected utility of
a Test E depends only on the differences between
the utilities for correct and incorrect classifica-
tions and is independent of the particular points of
reference relative to which these payoffs and
costs are calculated.

Suppose we want to measure payoffs and costs
in expected years of lifetime given that someone
has received a specific test result. Then we could
choose the amount of time someone is expected to
live if they do not receive treatment for the disease
as areference point. Equally, we could choose the
amount of time they are expected to live given that
they do receive treatment for the disease, which
they might or might not have, as our reference
point. These modifications could change the util-
ity of a positive or negative test result, u(e) and
u(—e), but would not change the expected utility
of a test, eu(E).

Thus, to make things easier, we can always trans-
late any set of utilities such that ug, = uz = 0, as

follows: For any utility function u = {Z;’ ';f ’ ], we can

define a new utility function 1™ = [”(')7 u(,*)a } by setting
U, =y, — ugyand uy, = uy, — ug, While this can
change the utility of an individual test result, the
expected utility of the test as a whole stays the
same. With respect to levels of measurement as
traditionally defined, what this means is that utili-
ties need only be measured on an interval scale;
utilities do not need to be measured on a ratio scale
for our subsequent results to hold. Furthermore,
subsequent results will make clear that so long as
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utilities were measured at least on an interval scale,
the expected utility gain of tests—up to a constant
positive multiple—exists on a ratio scale, with a
true zero point.

We next analyze the expected utility gain of
tests. Consider a diagnostic Test E, that is, a test
for which a positive result increases the probabil-
ity of disease and a negative result decreases the
probability of disease. What are possible values
for eu(E)?

First, we know from Good (1967) that no
test has negative expected utility, assuming (as
we do here) that tests have no intrinsic cost.
Butunder which circumstances is the expected
utility of a diagnostic test strictly positive?

Result 2. Let H = {h, -=h} be the hypothesis
space associated with a disease and let u be a
proper utility function with corresponding thera-
peutic threshold #,. Let E be a diagnostic test for
H. Then the test has positive expected utility,
thatis, eu(E) > 0, if and only if both P(h|—e) < 1,
and P(hle) > t,.

The proof is given in the Appendix. This
result may be intuitive, yet it has important
implications. It follows from Result 2 that the
expected utility of a Test E can be zero in
exactly one of two possible ways. One way is
if the probability of disease is less than the
treatment threshold irrespective of the test
result, that is, P(h|—e) < 1, and P(hle) < f,.
The other way is if the probability of disease is
greater than the treatment threshold irrespec-
tive of the test result, that is, P(h|—e) > t, and
P(hle) > t.. This means that, while a test is
informative if either test result changes the
probability of a person having the disease,
that is, if P(h|—e) < P(h) < P(hle), the test is
useful only if its outcome is able to change the
utility-maximizing course of action. More pre-
cisely, a test is useful if a positive test outcome
results in the utility-maximizing decision
changing from not treating to treating the
patient or if a negative test result results in
the utility-maximizing decision changing
from treating to not treating the patient. Further
note that for P(h) = t,, any informative
test also has positive expected utility, since
a change in beliefs necessarily results in
P(h|me) < t, and P(h|e) > t,. Finally, the ex-
pected utility gain of a Test E is always

either zero or of the form
eu(E) = P(e)P(hle)u,, + P(=e)P(~h|=e)uy,
— max[P(h)u,,, P(=h)uy,), 5)

given that we can set ug, = ug = 0.

The relevant factors for computing the utility of
any individual state-action combination (e.g.,
“the utility of treating the patient is 0.6”) include
the prior probability of disease, the likelihoods of
obtaining a positive test given that the disease is
present or absent, and the four specific utilities for
correct and incorrect decisions with the resulting
therapeutic threshold (Table 2 and Figure 1).
Must each of the four individual utilities also
be considered for determining tests’ relative
expected utility, that is, the ratio of one test’s

utility to another test’s utility, ZE%‘? In fact, for

assessing the relative utility of tests, we do not
need to know all four items from the utility
function: All that matters is the therapeutic thresh-
old ¢, that results from those four utility values. To
show that this is the case, we need both Result 1,
above, and Result 3, which is presented below.

Consider a situation in which the probabilities
are known, but in which there are two possible
sets of utilities, u and u™, where u™ is formed by
multiplying all the utilities in u# by a positive
constant. These two utility functions entail the
same therapeutic threshold 7,, and therefore the
utility-maximizing decision under the two utility
functions is identical. However, is it possible that
one test has higher expected utility under u and
the other test has higher expected utility under z*?
No: If the individual utility values are multiplied
by a constant, the resulting expected utility gain of
the test is multiplied by that same constant:

Result 3. Let H = {h, =i} be a binary hypoth-
esis space associated with a disease and let
E = {e, me} be a diagnostic test for H. Let u =

[er ”fﬂ} andu'= [0‘”’” iy ], where o > 0, be two
Uy Upy gy, Oy,

utility functions for H. Then the expected
utility of Test Eunder u’ is o times the expected
utility of E under u; that is, eu’(E) = o eu(E).

The proof is given in the Appendix. Although
this result may be intuitive, when combined with
Result 1, its implications are far-reaching.

First, we can change the unit of measurement of
the utility function, and the expected utility of the
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test will change accordingly. For example, if the
expected utility of a Test E is 0.10 expected
life years, then the expected utility of Test E is
also 5.2 expected life weeks, assuming 52 weeks
in a year.

Second, we can combine Result 1 with Result 3.
Suppose we have a proper utility function u.
According to Result 1, we can replace u with a
utility function u® with the same therapeutic
threshold ¢ and u}‘p = uji‘n = 0, such that
eu(E) = eu™(E) by setting u;, = u,, — up, and
Upy = Uy, — Ugy,. FOr 0 =y, + uy, = gy — g, +
Uz, — Ug,, WE CAN TEWTite u*aso- [(1 Bt‘) to] If we

denote the expected utility of E relative to
[(l — 1)

0
Result 3, eu(E) = eu*(E) = o - eu, (E).

For the present analyses, the relative expected
utility of tests is especially important because we
are concerned with identifying which test out of
two (or more) has the highest expected utility
gain. Suppose we have another Test F with
eu(F) > 0. Then the ratio iZEIEp; for the two tests
o-eu (E) _ eu, (E)
o ey, (F) eu,, (F)
and is thus independent of a. Now suppose

. ’ -
we have another payoff matrix u' = [Z,”’ "/”]

o Wm
with the same therapeutic threshold z, as u.
Then we can replace u’ with a payoff matrix o' -

[(lstx) 0

to] by eu, (E), then, according to result

E and F relative to u is equal to

Iy

],Wiﬂl(x’=u,’n—b¢,+u,;,—%,(x’7é0and

again, the ratio Zzgg for the two tests E and F
. ;- o'-eu, (E) _ eu, (E) .
relative to u’ is equal to o« (F) = au, (F) Thus, it

does not matter whether the relative utility of tests

E and F is calculated using u or u’. As long as the

two utility functions entail the same threshold ¢,,
eu(E)

the ratio % will be the same.

The key insight from these analyses is that if a
particular test-selection strategy is optimal in a
situation with normalized utilities of the form

tx
of t,, then such a test-selection strategy is also
optimal in any other situation whose utilities
are associated with the same therapeutic thresh-
old z,. As aconsequence, it is possible to use such
normalized utility functions without loss of gen-
erality in both analytical and simulation-based
investigations. An important psychological
implication is that if a physician has an idea of

[(1 6’*') 0], which entails a therapeutic threshold

the appropriate therapeutic threshold, for exam-
ple, that it would make sense to treat a particular
disease if the probability of that disease is at least
0.1, then the precise numerical ingredients of the
utility function do not need to be known in order
to assess the relative expected utility of the
possible tests.'

Analytic Results on the Likelihood
Difference Heuristic

The previous sections have provided a formal
analysis of how to determine the expected utility of a
test, and the relation between tests’ utility and the
therapeutic threshold implied by the utilities. In this
section, we are concerned with test selection: Given
two (or more) available tests for diagnosing a
patient, how should one determine which test
to conduct? Our focus here is on a very simple
strategy that does not rely on calculating each
test’s expected utility gain.

The likelihood difference of Test E is the
difference between the likelihood of obtaining
a positive test result given the disease is present
(the true positive rate) and the likelihood of
obtaining a positive test result given the disease
is absent (the false positive rate), formally
ME) = P(e|lh) — P(e|-h). We call the strategy
of conducting the test with the highest likelihood
difference the Likelihood Difference Heuristic
(LDH). Suppose there are two tests, E, such
that P(elh) = 1 and P(e|-h) = 0.2, and F,
such that P(f|h) = 0.9 and P(f|-h) = 0.05.
Test E has AM(E) = 0.80, whereas Test F has
MF) = 0.85, so the LDH would select Test F
to conduct. (If two or more tests tie for highest
likelihood difference, the LDH selects among
them randomly.)

! Consider some arbitrary statistical environment, for
instance where P(h) = 0.3, and P(e|h) and P(e|-h) are
generated from a uniform distribution between O and 1.
Uy uf,,} _

Suppose the applicable utility function is u = [u M
fn m

[ _01 _09 ] which corresponds to a therapeutic threshold of 7, =

0.1. Further assume that a particular test-selection strategy
identifies the objectively more useful test out of a pair of
random tests in 70% of cases. Given these results we know that
the performance of the heuristic would be the same in an

environment where u = 0.9 0
0 0.1

utilities for which ¢, = 0.1, and no matter if the utilities measure
extended life expectancy, dollars saved, or any other units.

, or any other proper set of
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The LDH, like information gain and other OED
models, ignores outcome utilities and does not in
general choose the highest expected utility gain
test (Meder & Nelson, 2012). However, whereas
most pure-information utilities take the prior
probability of disease into account, the LDH
also ignores the prior probability. In situations
with outcome-based utilities, would it ever be
sensible to use such a simplistic strategy to select
tests? In the following, we prove that given
maximal need for information, that is, if the prior
probability of the disease P(h) equals the thera-
peutic threshold tz,, the LDH is guaranteed to
identify the higher-expected-utility-gain test.

Result 4. Let H = {h, ~h} be a hypothesis space
associated with a disease and let u be a proper utility
function for H with corresponding therapeutic thresh-
old t.. If P(h) =t,, then there exists a positive 3, such
that for any diagnostic Test E, we have eu(E) = BAME).

The proof is given in the Appendix. This result
shows not only that the LDH will select the
highest expected utility gain test but that a test’s
expected utility gain is a constant multiple of its
likelihood difference.

What should that constant multiple, B, be? If

t) 0

standardized utilities of the form [(16 . ] are

X

used, then, according to the proof of Result4, p =
P(h)y (1 — P(h)) = t, (1 — t). Thus, for any
diagnostic Test E and given that the decision
maker is subject to maximal need of information
and therefore decision indifference, the expected
utility gain is highest if P(h) =t,=0.5. However,
from Results 1 and 3, it follows that the ratio of
two tests’ expected utility depends only on the
therapeutic threshold ¢, entailed by the applicable
utility function and is otherwise independent of

the particlar values in [”"’ i ] Accordingly, in a
u u,

Ufn tn

situation of maximal need for information, the
LDH invariably chooses a (not necessarily un-
ique) utility-maximizing test.

What if a decision maker is not at the point of
decision indifference, for example, if P(h) #¢,? In
this case, the LDH is not in general optimal.

ResultS. Let H = {h, ~h} be a hypothesis space
associated with a disease and let u be a proper set of
utility values for H with corresponding therapeutic
threshold ¢,. Thenif P(h) # t,, there exist tests £ and
F such that M(E) > A (F) while eu(E) < eu(F).

The proof in the Appendix gives a procedure
that is applicable in any situation where P(h) # ¢,,
for finding a pair of binary tests E and F such that
one test has higher expected utility, but the other
test has a higher likelihood difference.

Importantly, while this result demonstrates that
the LDH is not exactly optimal if P(h) # ¢,, we
do not know whether the LDH’s performance
degrades gracefully as we move away from its
optimality condition. Nor do we know whether
other pure-information strategies (such as infor-
mation gain or probability gain) would also be
optimal if P(h) = t.. We also do not knowm
whether other purely informational OED strategies
would perform better or worse than the LDH under
particular combinations of P(h) and ¢z, values. We
address these issues in a simulation experimentin a
subsequent section on “The Bigger Picture: Simu-
lation Results and Test Selection Based on OED
Models”.

What Likelihoods Matter Where:
Sensitivity and Specificity

Result 4 implies that if an agent is at a point of
decision indifference because P(h) = t,, and two
tests have the same likelihood difference, then
those tests also have the same expected utility.
Are there some test characteristics that reveal
which of two tests with the same likelihood
difference has the highest expected utility if
P(h) # 1.7

It turns out that there are. Specifically, the
relevant test characteristics are the likelihood
that the test is positive, given that the patient
has the disease, P(e|h), and the likelihood that the
test is negative, given that the disease is absent
P(=e|=h). In the medical literature, P(e|h) is
referred to as the semsitivity of a test, and
P(—e|-h) is referred to as the specificity of a
test. Which of these two likelihoods is more
important for a test’s expected utility gain de-
pends on the relation between the prior probabil-
ity of disease P(h) and the therapeutic threshold 7,:
If the prior probability of disease is below the
threshold (i.e., P(h) < t,), the relevant likelihood
is P(—e|-h), the test’s specificity. Conversely, if
the prior probability of disease is above the
threshold (i.e., P(h) > t,), the relevant likelihood
is P(el|h), the test’s sensitivity.
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Before we prove this, we will show that there is
an interesting relationship that establishes which
test likelihood is most important for the posterior
probability of disease given a positive test result,
P(h|e), and the posterior probability of the disease
being absent given a negative test result, P(—/|—e).
(In medicine, P(hle) is referred to the as positive
predictive value of a test, and P(—h|—e)is referred
to as the negative predictive value of a test.)

Result 6. Let H = (h, ~h) be a hypothesis space
associated with a disease and let E and F be two
diagnostic tests for H with equal likelihood differ-
ence, ME) = MF). Then the following holds:

i. If P(—e|-h) > P(—f|-h), then P(hle) >
P(h|f). Thus, if E has higher specificity
than F, then the posterior probability of
disease is higher given a positive result from
E than given a positive result from F.

ii. If P(e|lh) > P(f|h), then P(=h|-e) > P
(=h|=f). Thus, if E has higher sensitivity
than F, then the posterior probability of
disease is lower given a negative result
from E than given a negative result from F.

The proof is given in the Appendix. We now
give a more general result on the relationship
among the sensitivity P(e|h), the specificity
P(—e|—h), the prior probability P(h), and the
therapeutic threshold z,.

Result 7. Let H = (h, —h) be the hypothesis
space associated with a disease and let u be a
proper utility function for H. Let E = (e, —e) and
F = (f, =f) be two diagnostic tests for H, with
ME) = MF). Then the following holds:

i. If P(h) < t, and P(—e|-h) > P(—f|-h),
we have eu(E) > eu(F).

ii. If P(h) > t, and P(e|h) > P(f|h), we have
eu(E) > eu(F).

The proof is given in the Appendix. One
interesting insight from the proof is that we can
calculate the expected utility of a Test E as a
function of the specificity of E if P(h) < t, or as a
function of the sensitivity of E if P(h) > t,. More
precisely, we can show that:

i. If P(h) < t,, then the expected utility of a
test is either zero or of the form

eu(E) = u,,P(h)ME)
+ [spec(E) — 1][u,, P(~h)
— u,P()]. 6)

ii. If P(h) > t,, then the expected utility of a
test is either zero or of the form

eu(E) = u,,P(=h)\M(E)
+ [sens(E) — 1][u,,P(h)
= u, P(=h)]. (7)

This means that for p(h) < t,, eu(E) will be
smaller than u,, P(h)ME), as [u,P(—h) — u,,P(h)]
is positive in that case. Similarly, for p(h) > t,, we
can see that eu(E) will be smaller than
Uy, P(Gh)ME), as [u,,P(h) — u,,P(=h)] is positive
in that case. Recall that for P(h) = t,, we have
eu(E) = uy, PCRME) = uy,P(WME).

Is this result also true if the tests have different
likelihood differences? It is not, as the following
counterexample shows. Suppose the prior prob-
ability of disease P(h) = 0.50 is larger than the
therapeutic threshold #, = 0.15. Suppose further
that we have two tests E and F, with P(elh) =
0.90, P(e|-h) = 045, P(f|h) = 0.84, and
P(f|-h) = 0. Because positive test results
increase the probability of disease for both tests,
both tests are informative. Test E has higher
sensitivity (0.90) than Test F (0.84). But whereas
Test E has zero expected utility gain, Test F has
positive expected utility gain.

What is happening in this scenario? Because
the prior probability of disease is greater than the
therapeutic threshold, if no test could be con-
ducted, the best decision would be to treat the
patient. In this type of situation, a test has positive
utility if the posterior probability of disease given
a negative test outcome would be less than the
therapeutic threshold. In this case, the posterior
probability of disease given a negative outcome
to Test E is about 0.154, so the best decision
would still be to not treat the patient. In the case of
Test F, however, the probability of disease given
a negative test result is about 0.138, which is
below the therapeutic threshold. Since a negative
test result changes the best course of action to take
(i.e., the utility-maximizing treatment decision),
Test F has positive expected utility gain.
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The Bigger Picture: Simulation Results and
Test Selection Based on OED Models

If the therapeutic threshold 7, equals the prior
probability of disease P(h), then the LDH invari-
ably identifies the test with highest expected utility
gain. Do better-known OED models, which select
tests based on epistemic utility functions, also do
so? What if the precise values of P(h) and ¢, are not
known? If the prior probability of disease is only
approximately equal to the treatment criterion,
P(h) ~ t,, is it still a good bet to use the LDH?
How does the LDH compare with prominent OED
models if the prior probability of disease and the
therapeutic threshold are not even approximately
equal, P(h) # t,? Here, we address these questions
via simulations and a numeric example.

Other OED Models Are Suboptimal
Where the LDH Is Optimal

The LDH invariably identifies the best test if
P(h) =1t Butif P(h)=t,,and 0 < ¢, < 1, then any
informative test is useful. Do other models of
the value of information also identify the most
useful test in this case? Here, we consider some
OED models that are prominent in the medical
decision-making and psychological literature.
(For equations and example calculations with
these OED models, see Nelson, 2005.) The models
we consider are as follows:

e expected information gain, based on
expected reduction in Shannon’s (1948)
entropy (Benish, 1999, 2003; Lindley,
1956; Oaksford & Chater, 1994);

e probability gain, which quantifies improve-
ment in classification accuracy (Baron, 1985;
Nelson, 2005); and

* Bayesian diagnosticity and log diagnosticity,
which are based on likelihood ratios or log
likelihood ratios (Good, 1950; Good &
Card, 1971).

Do these OED test-selection methods, like the
LDH, also correctly identify the best test when
P(h) = t,? Consider a case where P(h) = t, =
0.25, P(e|h) = 0.81, P(e|=h) = 0.27, P(flh)
= 0.43, and P(f|-h) = 0. The likelihood differ-
ence of Test E, ME) =0.81 — 0.27 = 0.54, which is
greater than the likelihood difference of Test F,
ME) =043 — 0.00 = 0.43. Because P(h) = t,, we
know from Result 4 that the ratio in the expected

utility gain of Test E to Test Fis ME )/MF ) = 0.54/
0.43 ~ 1.26, and Test E is more useful. Do the other
OED models also correctly identify Test E as more
useful? In contrast to the LDH, they do not. Test '
has higher information gain (0.246 bit vs. 0.167 bit
for Test E), probability gain (0.108 vs. null), Bayes-
ian diagnosticity (infinite vs. 3.501), and log;q
diagnosticity (infinite vs. 0.541). Thus, it is not
the case that just any pure-information test-selection
strategy, even if P(h) = t,, can be counted on to
identify the highest utility gain test to conduct.
Information gain and Kullback-Leibler (KL)
divergence, which have been suggested in the
medical literature (Benish, 1999, 2003), pick the
lower-expected-utility-gain test. KL divergence
and information gain are identical for purposes of
evaluating tests’ expected usefulness (Oaksford &
Chater, 1994). Probability gain, which accounts
well for human test selection in probabilistic
classification tasks when probabilities are learned
experientially (Nelson et al., 2010), also picks the
lower-expected-utility-gain test in this example. It
is worth noting that information gain and proba-
bility gain are both special cases of the Sharma—
Mittal family of generalized information gain
measures (Crupi et al., 2018; Sharma & Mittal,
1975), and other information-theoretic models
could also be used. The likelihood ratio-based
methods, Bayesian diagnosticity and log diagnos-
ticity, are not part of the Sharma—Mittal family
of information-theoretic models. These models
actually deem the lower-expected-utility-gain
test to be infinitely useful. The fact that the likeli-
hood ratio-based methods fail here may be sur-
prising to readers familiar with Signal Detection
Theory (Green & Swets, 1966; Stanislaw &
Todorov, 1999), where it is a convention to state
decision thresholds in terms of likelihood ratios.
These likelihood ratios take prior probabilities and
payoff utilities into account, in effect quantifying
how much evidence would be needed to change
the best decision. However, this example shows
that it does not follow that likelihood ratio-based
test-selection methods are optimal. Nor is this
example unique, or dependent on having a likeli-
hood value that is either O or 1. For instance,
suppose we were to change P(f|-h) from O to
0.001, while keeping the therapeutic threshold,
prior probabilities and other likelihoods unchanged.
Probability gain and information gain would not
change appreciably in this case. The likelihood
ratio-based methods, though no longer deeming
Test E to have infinite expected utility, would still
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deem Test E to be more useful than Test F. Further
discussion of limitations of the likelihood ratio-
based OED models, for instance, how in some
circumstances they are insensitive to prior proba-
bilities, can be found in Nelson (2005). Minka
(2001) gives a broader discussion of limitations
of likelihood-based methods in statistics.

Where Does Choice of Test Matter?

Our analytic results on the LDH, and the
example above, show that the LDH, but not
prominent OED models from the literature, is
optimal if the prior probability of disease exactly
equals the therapeutic threshold. But even if one
has a good estimate of those quantities, they
seldom are exactly known. What happens if the
prior probability of disease is close to, but not
exactly, the therapeutic threshold? What if the
prior probability P(h) and the therapeutic thresh-
old #, are very different from each other?

Before simulating the performance of various
strategies, we first explore the implications of
various P(h) and ¢, values. This is important
because it may be the case that for some combi-
nations of P(h) and t,, few tests actually have
positive expected utility gain, and that for other
combinations of P(h) and t,, randomly drawn
tests may differ substantially in their expected
utility gain. Figure 2 shows the results of these
simulations. Figure 2a gives the empirical fre-
quency that a randomly generated test has posi-
tive (greater than 10™'%) expected utility gain, as a
function of P(h) and t,, each incremented from
0.01,0.02, ... 0.99. Every test was generated by
independently sampling two numbers from a

Figure 2
Characteristics of Randomly Generated Tests

uniform distribution on the interval [0,1], assign-
ing the larger probability to P(e|h) (the true
positive rate) and the smaller probability to
P(e|-h) (the false positive rate). Figure 2a and
b are based on 10,000 random tests for each
combination of P(h) and ¢,; Figure 2c is based
on 10,000 pairs of random tests for each com-
bination of P(h) and ¢,. To avoid floating-point
errors, only tests with expected utility gain
greater than 107'% normalized utility units of

the form [(1 6’*) to] were deemed to have posi-

tive expected utility gain.

Results show that the combination of P(h)
and ¢, strongly influences the tendency of a
random test to have positive expected utility gain
(Figure 2a). For instance, if P(h) is very low and
t, is very high, it is extremely rare for a random
test to have positive expected utility gain. This
makes sense: If the prior probability of disease is
low, and a high threshold ¢, applies, then only
a test with very high positive predictive
value P(hle) can potentially change the best
decision from don’t treat to treat. Conversely, if
P(h)is very high and ¢, is very low, then only a test
with very high negative predictive value P(—h|-e)
can have positive utility gain. Figure 2b shows that
this general pattern is preserved if we consider the
mean expected utility gain of randomly generated
tests. Figure 2c shows that a similar pattern applies
if we consider the mean expected utility gain
difference of randomly generated pairs of tests.

The upshot of all this is that, from the perspec-
tive of making the right test-selection decision or
of capturing as much expected utility gain as
possible, not all combinations of P(k) and t,

Random test characteristics

(a) Proportion of tests with positive utility gain
1.0
Proportion
100%
75%

50%

25%

Therapeutic threshold t,
Therapeutic threshold t,

0.0
0.00.10.20.30.40.50.60.70.80.91.0
Probability of disease P(h)

(b) Average utility gain
0

0.0-+%
0.00.10.20.30.40.50.60.70.80.91.0
Probability of disease P(h)

(c) Average difference in utility gain
1.0

Utility gain
0.08

Utility gain
0.06

0.06
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0.0
0.00.10.20.30.40.50.60.70.80.91.0
Probability of disease P(h)

Note. (a) Proportion of randomly generated tests that have positive expected utility gain as a function of the probability of
disease P(h) (x axis) and therapeutic threshold , (y axis). (b) Average utility gained from randomly generated tests. (c) Average
difference in expected utility gain in pairs of randomly generated tests. See the online article for the color version of this figure.
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values are equally important. Rather, situations in
which P(h) and z, have similar values, especially
if these values are not too extreme, are by far the
most important. In the next section, we address
how the LDH and other strategies perform as a
function of P(h) and t,.

Simulations of the LDH, Information Gain,
and Probability Gain

We now know that prominent OED models in
medical decision-making and psychological liter-
ature, unlike the LDH, are not in general optimal
when P(h) = t,. We further know that for purposes
of making a right choice where it matters, situa-
tions where P(h) = t,, especially if the values are
not too extreme, are especially important. How do
the LDH and other pure-information-based OED
models perform for various P(h) and ¢, values?

Figure 3

To address this question, we simulated the
performance of the LDH, information gain, and
probability gain, as shown in Figure 3. Similar to
Figure 2, we considered every combination of
P(h) and t,, each ranging from 0.01, 0.02, ...
0.99. The values plotted are the means from
simulations of 10,000 random pairs of tests at
each point. In the top row of Figure 3, we plot the
probability that using a particular strategy leads to
choosing the higher-expected-utility-gain test out
of a pair of tests. To be conservative, in the case
where the difference in the normalized utility
values is less than 10_10, we counted either test
choice as a success. From left to right, results are
plotted for the LDH, information gain, and proba-
bility gain. The LDH (top left) is optimal if P(h) =1,
consistent with our analytical results, with its
performance decreasing quickly but smoothly
as we move away from P(h) = t,. The LDH’s
performance is quite a bit better than chance

Simulation of Various Pure-Information Test-Selection Strategies’ Performance

Performance of test-selection strategies
(a) Probability of selecting the higher utility gain test
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Note. (a) Probability that the best test is selected from a pair of tests if the LDH, information gain, or probability gain model

are used. (b) The expected utility gain loss that would be incurred by using the LDH, information gain, or probability gain
model, respectively, to select among pairs of tests. LDH = likelihood difference heuristic. See the online article for the color
version of this figure.
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throughout the range of P(h) and ¢, values consid-
ered. Information gain (top middle) is not optimal
anywhere among the range of P(h) and ¢, values
considered. However, information gain appears
fairly robust across all combinations of P(%) and 7,
values and performs better than the LDH for many
combinations of P(h) and ¢,. Probability gain is
optimal if #, = 0.5, which is the case where the
utility-maximizing decision corresponds to the
most probable state, namely to treat the patient
iff P(h) > 0.5. However, unlike the LDH and
information gain, if P(h) and t, are both either
very low or very high, probability gain performs
very poorly, approaching chance performance.

In the bottom row of Figure 3, we plot the mean
loss in expected utility resulting from using the
LDH, information gain, and probability gain, to
selectamong pairs of tests. In some respects, these
results parallel the results for probability of
selecting the best test. However, some key differ-
ences should be pointed out. One key difference is
thatif P(h) ~ 0and ¢, ~ 1, there is next to no cost of
whichever test-selection strategy is used because
(as shown in Figure 2) almost no possible deci-
sion has positive expected utility gain. The other
key difference is in the comparatively broad and
smooth-boundaried regions bordering the bound-
ary cases in which the LDH and probability gain
are demonstrably optimal. If P(h) = 1, evenif P(h)
and ¢, are not exactly equal, using the LDH is a
solid bet. A similar statement can be made for
probability gain: if £, & 0.5, using probability gain
is a solid bet.

To summarize, not all combinations of P(h)
and z, are equally important from the perspective
of maximizing outcome-based utilities; rather,
cases where P(h) ~ t,, and the values are not
too extreme, are especially important. Interest-
ingly, these conditions highly overlap with where
the LDH is either exactly (P(h) = t,) or approxi-
mately (P(h) = t,) optimal. If the optimality
conditions of the LDH or probability gain are
approximately met, then there is effectively no
loss in utility from using the appropriate pure-
information strategy, rather than explicitly calcu-
lating the actual expected utility gain of each test.
Information gain, though not optimal for any
combination of P(h) and ¢, gives robust perfor-
mance throughout and is in fact better than the
LDH for many combinations of P(h) and f,.
Probability gain is optimal if 7, = 0.5, and robust
in cases where t, & 0.5. However, it is not as
though any pure-information strategy would be

sensible to use. In particular, if P(h) and ¢, are
both fairly low, or if P(h) and ¢, are both fairly
high, then using probability gain could be quite
costly in terms of expected utility gain.

A Real-World Example: Latent
Tuberculosis Testing

Newell and Card (1985) noted that “Nothing
drives basic science better than a good applied
problem.” Are there real-world situations in
which the LDH could be applied? Indeed, there
are many situations in medicine (Alberg et al.,
2004) and other domains in which it is necessary
to choose among binary (or binarized) tests. Here,
we consider the case of latent tuberculosis screen-
ing tests. According to the World Health Organi-
zation, active tuberculosis (TB) is one of the top
10 causes of death worldwide (World Health
Organization [WHO], 2019, 2020). TB is esti-
mated to have killed 1.5 million people in 2018
and 1.4 million people in 2019 (WHO, 2019,
2020). An important strategy to prevent spread of
the disease is to identify individuals with latent
tuberculosis infection (LTBI), that is, individuals
who have been infected with Mycobacterium
tuberculosis but do not present any radiographic
or bacteriologic evidence or symptoms of TB.
These individuals are expected to develop active
TB at a later stage of their life in approximately
10%—-12% of cases and might benefit from pre-
ventive treatments (Esmail et al., 2014).

LTBI screening represents an interesting case
study for several reasons. To begin with, there is
no “gold standard” test for LTBI. The existing
tests can be grouped into two classes, the tuber-
culin skin test (TST) and the interferon gamma
release assays (IGRA), each of which has advan-
tages and limitations. For simplicity, we will refer
to the TST and to the IGRA as if each were a
single test, rather than classes of tests. In particu-
lar, TST has been widely used for a century, with
well-studied clinical applications and cutoff
points for therapeutic indications for different
ages and risk groups. However, its measurement
is subject to interobserver variability, a positive
testresult does not distinguish between recent and
earlier infections (which have a lower risk of
progression to disease), and repetitions of the
test might generate a booster phenomenon.
IGRA tests are not subject to reader bias and
do not tend to boost responses when repeated.
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However, accuracy can be decreased by problems
in collecting or transporting blood specimens.
Additionally, there is limited data on the use in
some groups, such as young children and immu-
nocompromised persons. Some studies (e.g., Al-
Orainey, 2009; Mazurek et al., 2010; Smith et al.,
2011) have suggested a slightly higher sensitivity
for the TST and a higher specificity for the IGRA.

What likelihood values apply for the IGRA and
TST tests? Based on our reading of the literature,
reasonable estimates for each test’s sensitivity
and specificity, values are shown in Table 3. The
point for the present article is not whether these
numbers are exactly right. Indeed, every study has a
different estimate, also depending on which specific
IGRA or TST test is considered. Rather, our moti-
vation here is to use plausible numbers from a real-
world example to try to connect to our theoretical
analyses. Recall that a test’s sensitivity is P(e|h),
and that 1 — specificity = 1 — P(-e|-h) =
P(e|-h). If we use these values to compute the
likelihood difference A for each test, we get
MTST) = .78 and MIGRA) = .83 (Table 3).
According to these numbers, then, the likelihood
difference is greater for the IGRA test. Thus, if a
doctor would use the LDH, they would choose the
IGRA rather than the TST test.

Under Which Circumstances Would Each
Test Be Most Useful?

Does the TST or IGRA test have higher expected
utility gain? More precisely, what are the condi-
tions in terms of prior probability of disease p(h)
and therapeutic threshold #, under which the TST or
IGRA test would have higher expected utility gain?
Before asking what prior probability or therapeutic
threshold is most plausible, we consider every
possible combination of prior probabilities and
therapeutic thresholds. In Figure 4a, we plot the
usefulness of the TST test as a function of the prior
probability of disease P(h) and the therapeutic
threshold 7,, with both P(h) and #, ranging from
0.01, 0.02, ... 0.99. Figure 4b shows the same

analysis for the IGRA test. The color of each point
denotes the expected utility gain of a test for a
particular combination of p(h) and #,. As the le-
gends to the right of Figure 4a and 4b note, black
denotes zero utility; dark purple denotes low utility;
red denotes greater utility; orange and yellow
denote highest utility. Broadly speaking, we see
that both tests tend to have higher utility where P(h)
and ¢, are similar in value to each other, and
moderate (neither close to 1 nor close to 0). There
is also a broad range of circumstances, for example,
if the prior probability of disease is high and the
therapeutic threshold is low (or vice versa), in
which both of the tests have zero utility. Given
these two analyses, we can determine the circum-
stances under which each test has higher expected
utility gain. Figure 4c plots this, with red denoting
where the IGRA test has higher utility and blue
denoting where the TST test has higher utility.
Black denotes where the tests are both useless
because no test result could change which course
of action (treat or don’t treat) has higher expected
utility gain. This type of analysis, paralleling
results from the simulations in Figure 3, shows
that even approximate knowledge of the thera-
peutic threshold and prior probability of disease
could be enough to enable selection of the higher
utility test.

What Prior Probabilities and Therapeutic
Threshold Values Are Plausible?

What is the true probability of having LTBI?
One reason for our interest in LTBI screening is
the enormous variation of LTBI prevalence across
countries and, within the same country, across
specific subpopulations. For example, it has been
reported that around one third of the world’s
population is affected by LTBI (Lamberti et al.,
2014), including more than 40% in Uganda or
50% in the Ivory Coast, but less than 5% in the
U.S. and most European countries (Bentley et al.,
2012; Mazurek et al., 2010). However, even in
countries in which the general prevalence of LTBI

Table 3
Approximate Likelihoods of LTBI Screening Tests

Test Sensitivity (%) Specificity (%) P(e|h) P(el=h) LikDiff A
TST 88 90 .88 .10 78
IGRA 85 98 .85 .02 .83
Note. LTBI = latent tuberculosis infection; TST = tuberculin skin test; IGRA = interferon gamma release assays.
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Figure 4
Real-World Example: Usefulness of IGRA and TST Tests in Latent Tuberculosis Testing

Real-world example: Latent tuberculosis testing

(a) Expected utility gain of TST test (b) Expected utility gain of IGRA test (c) Map of where TST or IGRA test
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Note. (a)Expected utility gain of the TST test. (b) Expected utility gain of the IGRA test. (c) Map showing where the TST (blue)
or IGRA test (red) has hi%her expected utility gain; with black denoting areas where neither test has expected utility gain. The tests
tied exactly in 3 of the 997 = 9,801 points plotted. All of these points were on the boundary between the regions where the TST and
IGRA tests have higher utility. For purposes of plotting the figure, these three points were arbitrarily assigned to the TST test.
IGRA = interferon gamma release assays; TST = tuberculin skin test. See the online article for the color version of this figure.

is low, people working in hospitals, homeless
shelters, correctional facilities, or residential
facilities for patients with HIV infection are
considered at higher risk (Nienhaus et al.,
2014; Zhang et al., 2013). For example, the
prevalence of LTBI within German health care
workers has been reported to be around 9.9%
(Schablon et al., 2010).

What therapeutic threshold is appropriate for
treating LTBI? We informally asked a small
sample of experienced physicians from the Ne-
grar Center for Tropical Diseases (Verona, Italy)
to provide an estimate of the therapeutic threshold
for LTBI. When asked for the probability of LTBI
above which it would make sense to treat a young
adult in good health, they gave an estimate of
about 7, = 10%. Interestingly, this therapeutic
threshold is essentially identical to the estimated
LTBI prevalence of 9.9% within German health
care workers. Thus, if a screening LTBI test was
to be performed on people from a similar reference
class (e.g., health care professionals living some-
where else in Europe), IGRA should be preferred
over TST as it is likely to provide a higher
expected gain in utility, given that P(h) ~ f,.

Limitations and Implications of the Latent
Tuberculosis Infection Analysis

A number of simplifications are required for
the above (or any) analysis, some of which might
limit its usefulness; we therefore consider some
limitations here. To start with, probabilities we

have estimated from some articles in the litera-
ture, and the therapeutic threshold 7, estimate
obtained from a small sample of physicians,
should not be taken as authoritative. However,
our formal analyses do not change according to
where the payoffs come from, and they can easily
be applied not only to the patient’s utilities but
also to public health or environmental objectives,
and ideally to a combination of them. We also did
not consider intrinsic test costs. TST is inexpen-
sive, although it does require trained health care
professionals and two visits (the first for admin-
istration, the second for interpretation). By con-
trast, IGRA tests can be done on a single visit but
require laboratory facilities. Such costs could be
included in the analyses and could change the
results in Figure 4 as to the utility of each test or
the circumstances (combinations of P(h) and t,)
under which each test is more useful. Other
simplifications are that people vary in their ten-
dency for LTBI to progress to full TB or in what
developing TB implies for them. A more sophis-
ticated model would also include the risk of
progressing to TB if not treated (which is higher
for individuals with significant comorbidities) as
well as the personal or social consequences of
developing TB (which are more serious for in-
dividuals who are in contact with children or
immunocompromised people). Information gain
or other general-purpose OED models can be used
in situations with multiple possible states of the
world, for example, if there were three or more
possibilities in terms of the likelihood of LTBI to
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develop into active TB. However, the LDH, or
other procedures that are based on binary tests and
states of the world, would no longer be applicable.

Arguing in favor of the applicability of the
LDH, although quantities in nature are often
continuously variable, states of nature and test
results are often treated as binary. Moreover, the
LDH (in contrast to an equation that takes all
payoffs into account) is easy to use and easy to
explain and thus could be a helpful tool in training
practitioners about test selection. Another moti-
vation for using the LDH could be its robustness:
It makes sense to use the LDH if P(h) ~ t,, even if
neither P(h) nor t, are known exactly. Our LTBI
analysis suggests that there may be relevant
situations in which the LDH identifies the
higher-utility-gain test.

General Discussion

Actively acquiring information through test
selection is important for reducing uncertainty
and identifying the best course of action to take.
However, tests are often time-consuming and
costly, both in terms of human and monetary
resources. What is a sensible way to select a
test if situation-specific utilities apply, and
what are the conditions under which different
test-selection strategies perform well? If exact
probabilities and the applicable outcome-based
utilities are known, then from a normative per-
spective one should use this information and
conduct a Bayesian decision-theoretic analysis
to identify the utility-maximizing test. In this
case, neither the LDH nor other general-purpose
OED strategies based on informational utility
functions are needed. But seldom are P(h), or
the therapeutic threshold , that is entailed by the
outcome-based utilities, known exactly. Our re-
sults show that if the prior probability of disease
P(h) is even approximately equal to the therapeu-
tic threshold t,, it is either optimal or close to
optimal to use the LDH to select tests. Importantly,
these circumstances overlap highly with the situa-
tions in which one’s test-selection strategy has the
biggest impact in terms of expected utility gain
(Figure 2). Not just any pure-information OED
model should be used, however (Figure 3). The
LDH and information gain have reasonable per-
formance across a wide range of P(h) and ¢,
values. By contrast, for some cases—in particular
where P(h) and , are both low or high—probability
gain approximates chance performance.

We have analyzed the situation of selecting a
single test before making a treatment decision.
However, in many situations, more than one test
can be conducted. This is a critical issue because it
is not in general the case that the best standalone
test is the best first test to conduct in a sequence of
tests (Geman & Jedynak, 1996, 2001; Hyafil &
Rivest, 1976; Meder et al., 2019; Nelson et al.,
2018). Planning an optimal sequential question
strategy requires knowledge of how the test re-
sults relate to each other, which cannot in general
be derived from the individual test likelihoods.
For instance, in the LTBI example, it is unclear
what the probability of disease given any partic-
ular set of results for the two tests is. People
(Jarecki et al., 2017), popular machine learning
methods (Domingos & Pazzani, 1997), and med-
ical decision-making models (Hamm et al., 2014)
tend to presume a priori that tests are class-
conditionally independent (i.e., test outcomes
are conditionally independent given the true cat-
egory). This assumption, even if seldom strictly
correct, can lead to high classification perfor-
mance under a wide range of circumstances
(Domingos & Pazzani, 1997); however, its im-
plications for test selection need to be studied.

In addition, a number of empirical questions
follow from the theoretical analyses of this article.
One is the relationship between direct estimates
of ¢, (e.g., by doctors or other health care profes-
sionals) and corresponding #, values computed
from elicited situation-specific utilities. The pos-
sible match between these values would provide
an important justification for the use of #, in
clinical practice to compute the value of tests,
even in case the underlying utilities are
unknown. Moreover, while use of likelihood
differences has been studied empirically in do-
mains such as causal reasoning (Cheng &
Novick, 1990) and belief updating (Gigerenzer &
Hoffrage, 1995), people’s use of the LDH has not
yet been tested in an explicitly medical diagnostic
context or in related situations with external
payoffs. Another question is how people select
tests, as a function of how probability values and
outcome utilities are communicated. The implica-
tions of outcome utilities for human test selection
have been studied in only a very small number of
articles (e.g., Baron & Hershey, 1988; Markant &
Gureckis, 2012; Meder & Nelson, 2012). These
studies suggest that it is difficult to make asym-
metric payoffs intuitive in human test selection. It
is possible that people follow different strategies
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according to whether the relevant probability va-
lues are learned through experience (Nelson et al.,
2010) or presented using the standard probability
format with explicit priors and likelihoods (in
which case, the LDH is easy to apply) or via other
numeric or graphical methods (Wu et al., 2017).
One objective for future work should be to identify
how to make utilities, probability values, and test
characteristics intuitive, such that people take them
into account appropriately when searching for
information.
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Appendix

Proofs of Mathematical Results

Proof of Result 1. Let H = {h, —h} be a binary hypothesis space associated with a disease and

let E = {e, —e} be a diagnostic test for H. Letu = {”;" “f"] be a utility function for H. Then the expected

utility of E with respect to the utility function u, which we denote by eu(E), is equal to the expected
utility of E with respect to the utility function »* = [”’1’ P 0 “ ], which we denote by eu™*(E); that is,
eu(E) = eu™(E).

Proof. Let us denote the utilities of e and e with respect to u by u(e) and u(—e) and the utilities of e
and —e with respect to u™ by u*(e) and u™*(—e). We first calculate the utility of a positive test result for the
payoff function u*:

' (e) = max[P(he) 1t = ). PHle) (1, = i) = max [P() (1, =tt). P() (= 157,
= max|[P(h|e)u,, + P(=h|e)us,, P(=h|e)u,, + P(h|e)uy,]
—max|[P(h)u,, + P(=h)us,, P(=h)u,, + P(h)u,]
— P(=hle)ug, — P(hle)us, + P(=h)us, + P(h)uy,
= u(e) + (P(=h) = P(~hle)), + (P() — P(hle) iy,
= u(e) + (P(h) — P(H)) (5 — 15, (A

In the same way, we calculate the utility of a negative test result and get:
u* (=€) = u(~e) + (P(h) = P(hl=e)) (u, — ). (A2)

To calculate the expected utility eu™(E) of Test E, we weigh the utilities of the test results with the
probabilities P(e) and P(—e) of the test results and use the above relationship between the utilities with
respect to the two payoff functions:

eu*(E) = P(e)u*(e) + P(—e)u*(—e)
= P(e)[u(e) + (P(h) = P(hle))(up, — ug,)] + P(=e)[u(=e)
+ (P(h) = P(h|=e)) (up, — up,)]

= eu(E) + P(e)(P(h) — P(hle))(us, — uy,) + P(=e)(P(h) — P(h|=e))(up, — uy,)

= eu(E) + [P(e)P(h) — P(e A h) + P(=e)P(h) — P(=e A h)|(up, — ug,)

= eu(E) + [(P(e) + P(=e))P(h) — P(e A h) — P(=e A h)] (g, — uyp)

= eu(E) + (P(h) — P(h))(up, — ug,)

=eu(E). (A3)
O

Proof of Result 2. Let H = {h, =h} be the hypothesis space associated with a disease and let u be a
proper utility function with corresponding therapeutic threshold .. Let E be a diagnostic test for H.
Then the test is useful, that is, eu(E) > 0, iff both P(h|-e) < ¢, and P(hle) > ¢

(Appendix continues)
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Proof. Without loss of generality (see Result 1) we can assume that u;, = ug = 0.

We will first show that if eu(E) > 0, it follows that P(h|-e) < t,and P(hle) > f,. If under both test
results the same option as before is at least as useful as the other, then eu(E) = 0. This can easily be seen
by calculating eu(E) and choosing the same alternative (to treat or not to treat) both before the test result
is known and afterward, independent of the particular test result. If eu(E) > 0, then the decisions under
the two test results have to be different, which is only the case if a negative test result leads to an updated
probability of the person having the disease strictly below the therapeutic threshold, that is,
P(h|-e) < t,, and a positive test result leads to an updated probability of the person having the
disease strictly above the therapeutic threshold, that is, P(kle) > f,.

To show that from P(h|—e) < t.and P(hle) > t, it follows that eu(E) > 0, consider the following:
For P(h) < t,, the expected utility is given by

eu(E) = P(e)P(hle)uy, + P(me)P(~h|=e)uy, — P(=h)uy,
> P(e)P(—hle)u,, + P(—e)P(—h|-e)u,, — P(~h)u,, = 0. (Ad)
The expected utility is thus strictly larger than 0. For P(h) > t,, the expected utility can be
calculated as
eu(E) = P(e)P(h|e)u,, + P(—e)P(=h|=e)u,, — P(h)u,,
> P(e)P(hle)u,, + P(=e)P(h|=e)u,, — P(h)u,, = 0. (AS)

Again, eu(E) is strictly larger than 0. O

Proof of Result 3. Let H = {h, =h} be a binary hypothesis space associated with a disease and let

E = {e, —e} be a diagnostic test for H. Let u = [:‘"’ ’;f"] and v = BZ;” ZZ*'”} where o > 0, be two utility
fn n n mn

functions for H. Then the expected utility of Test E under u’ is a times the expected utility of £ under u;
that is, eu’(E) = o eu(E).

Proof. Since

u
[‘x'“rﬂ ilpy
Qelty,y Oty

} (e) = max[P(h|e)out,, + P(—hl|e)auy,, P(=h|e)ou,, + P(h|e)ou,]
— max|[P(h)ou,, + P(=h)ouy,, P(=h)ou,, + P(h)oui,]
= max|«(P(hle)u,, + P(=hle)us,), a(P(—h|e)u,, + P(hle)uy,)]
— max[o(P(h)u,, + P(=h)us,), a(P(=h)u,, + P(h)us,)]
= o - max[P(h|e)u,, + P(=h|e)us,, P(=h|e)u,, + P(h|e)uy,]

— o - max[P(h)u,, + P(=h)uy,, P(~h)u,, + P(h)uy,)]

Cau (o) (A6)
{“rp ”fﬁ}
Upp Uy
and equally,
u Qllyp OUpy (ﬁe) s Usp Usp (_‘3), (A7)
|:a'ufn ﬂ'ﬁ,,lil |:uf»t u,,,i|
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thus

eu
[(x-u,p iy,

(E) = POy, o,1(€)+P(eur,, ., (7€)
=

llp, Oy, Qlhpy Ollyy llpy, Oy,
=uo- Pe e o- P(—e e
( )“[,,,p ,,/p] (e) + (me)u [um ,,/ﬂ} (me)
Upy Upy Upp Uy
=a-e E). A8
u o] (E) (A8)
Uy U

O

Proof of Result 4. Let H = {h, =i} be a hypothesis space associated with a disease and let u be a

proper utility function for H with corresponding therapeutic threshold ¢,. If P(h) =t,, then there exists a
positive B, such that for any diagnostic Test E for H, we have eu(E) = BAME).

Proof. Without loss of generality we can assume that uy;, = ug, = 0 by Result 1. Since P(h) = t, by
assumption, we have P(h)u,, = P(=h)u,,, i.e., the utilities associated with choosing 4 and choosing —A
are equal. We posit = P(h)u,, = P(—h)u,,. Note that } is strictly positive since P(h) > 0 and u,, > u;, =
0. Also, pisindependent from Test E as it is only affected by the prior probability and the utilities. Let us
first look at the utilities of test results e and —e. The test results are labeled such that P(h|e) > P(h)and
thus P(—hle) < P(=h), by which

P(hle)u,, > P(h)u,, = P(=h)u,, > P(=h|e)u,,. (A9)
This, in turn, implies
u(e) = max[P(h|e)uy,, P(—h|e)u,,] — max[P(h)u,,, P(=h)u,,| = P(h|e)u,, — p. (A10)
Regarding negative test result e we have P(—h|—e) > P(=h), and thus P(h|-e) < P(h), by which
P(=h|=e)u,, > P(=h)u,, = P(h)u,, > P(h|=e)u,,, (A11)
which in turn implies

u(—e) = max|[P(—h|-e)u,,, P(h|=e)u,,] — max[P(h)u,,, P(~h)u,,) = P(=h|=e)u,, —p.  (Al2)

Putting all the foregoing together, we compute:

eu(E) = u(e)P(e) + u(—e)P(—e)
= [P(hle)u,, — BIP(e) + [P(=h|-e)uy, — BP(~e)

= P(h|e)P(e)u,, + P(=h|=e)P(=e)u,, — B[P(e) + P(-e)]

= P(e|h)P(h)u,, + P(=e|=~h)P(=h)u,, —

= pP(elh) + PP(—e|=h) — B

= pP(e|h) + p— PP(e|~h) — P

= PM(E). (A13)
O
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Proof of Result 5. Let H = {h, =h} be a hypothesis space associated with a disease and let u be a
proper set of utility values for H with corresponding therapeutic threshold ¢,. Then if P(h) # t,, there
exist Tests E and F such that AM(E) > MF) while eu(E) < eu(F).

Proof. Without loss of generahty we can assume that us, = ug, = 0 by Result 1. We will show a
general method to generate a pair of binary Tests E and F such that M(E) > MF). while eu(E) < eu(F).
More precisely, we will define an informative but useless Test E, that is, a test with P(h|—e) <
P(h) < P(h|e)and eu(E) =0, and a useful Test F such that M(E) exceeds MF) by some tiny amount € >
0. We will prove this separately for the two subcases of P(h) # t,, namely P(h) < t, and P(h) > t,.

Case 1: P(h) < t,. Let us posit:

P(elh) = 1. (Al4)
P(h)u
P(e|=h) = ((ﬂ;);” (A15)
m
u
P(flh) =1~ L,(( 2);” +s]. (A16)
n
P(f|=h) =0. (A17)
Note that il ,2)" 2 < 1, because by assumption P(h) < t, and hence P(h)u,, < P(=h)u,,. To ensure that
P(f]h) > 0, e must be chosen so thate < 1 — (< >)” 2 Asl — (( )) - js strictly positive, one can always

find a positive but tiny enough value of € to satisfy this condition. Clearly, the likelihood difference
heuristic favors Test E over F, because

7»(E)—%(F)=l—%—{l—<%+e>]=e>0. (A18)

However, as we will now show, expected utility computations imply the opposite ranking, that is,
eu(E) < eu(F). More precisely, eu(E) =0, while eu(F) is strictly positive. Let us first show that eu(E) = 0.
Given that P(h) < t,, we have P(h)u,, < P(=h)u,,, hence max[P(h)u,,, P(=h)u,,] = P(=h)u,,. Moreover,
given that P(—h|-e) > P(—h) and thus P(h|-e) < P(h), we have:

P(=h|=e)u,, > P(=h)u,, > P(h)u,, > P(h|=e)u,,, (A19)
which implies:
u(=e) = max[P(h|=e)uy,, P(~h|=e)uy,] — max[P(h)ug,, P(~h)uy)
= P(=h|-e)u,, — P(—h)u,,. (A20)
As for the positive test result e, note that by Bayes’s theorem and our probability assignments:
P(e|h)P(h)
P(e|h)P(h) + P(e|=h)P(=h)
_ 1- P(h)
- P(h)uy,
1+ P(h) + e P(=h)
P(h)
P+

U

P(hle) =

=L’ (A21)
U + Uy,
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which simply equals ¢, (because ug, = ug, = 0). So P(hle) = t,, and thus P(hle)u,, = P(=h|e)u,,,
which in turn implies:
u(e) = max[P(hl|e)uy,, P(=h|e)u,,] — max[P(h)u,,, P(=h)u,,
= P(_'h|e)utn - P(_'h)utn' (A22)

Putting all the foregoing together:

eu(E) = u(e)P(e) + u(-e)P(=e)

= [P(=hle)uy, — P(=h)u,,|P(e) + [P(=h|=e)uy — P(=h)u,|P(=e)
= [P(=hle)P(e) — P(=h)P(e) + P(=h|-e)P(=e) — P(~h)P(=e)]uy,
(—h) -

= [P(=h) — P(=h)]u,, = 0. (A23)

Regarding Test F, we have once again P(=h|=f )u,, > P(=h)u,, > P(h)u,, > P(h|=f)u,,, and
thus:

u(=f) = max[P(h|=~f )y, P(~h|=f Juy,| — max[P(h)uyy, P(=h)uy,)
= P(~h|~f )uy — P(=h)uy,. (A24)
But, on the other hand, because P(f|-h) = 0:
P(f1h)P(h)
P(f|R)P(h) + P(f|=h)P(=h)
—1> (A25)

P(hlf) =

Uy + Uy
so P(h|f) > t,, and thus P(h|f)u,, > P(=h|f)u,,, by which in turn:

u(f) = max[P(h|f)usy, P(~h| f)utys] — max[P(h)uyy, P(~h)u| = P(h| f)uy, — P(~h)uy,,  (A26)

and:

P(RIf)uyP(f) + P(=h|~f Jue P(+f) = P(=h)uy, > P(=h|f)un P(f) + P(=h|=f )up P(=f)

— P(=h)uy P(h| )u, P(f) + PRI~ )y P(2f ) = P(h)t, > OP(h| f)uy,

P(f) + P(=h|~f )unP(~f) = P(-h)u(P(f) + P(=f)) > O

u(f)P(f) + u(=f)P(=f) > 0

eu(F) > 0. (A27)

Case 2: P(h) > t,. In this case, let us thus posit:

P(=h)u,,
Plelh) = 1 P((h))u” (A28)
ip
P(el-h) = 0, (A29)
P(flh) =1. (A30)
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P(~h)u,,
P(flﬂh)=f5(h))u” +e. (A31)
1p

Note that ((h))”’" < 1, because by assumption P(h) > t,, so P(h)u,, > P(—=h)u,,. To ensure that

P(f|=h) < 1,e mustbe chosen sothate < 1 — T’;)""’ Asl— <;’;)""’ is strictly positive, one can

always find a positive but tiny enough value of € to satisfy this condition. Clearly, the likelihood
difference heuristic favors Test E over F, because

k(E)—X(F):l—%%’—[I—(IZ;T};)LZ:+S)}=9>0. (A32)

However, as we will now show, expected utility computations imply the opposite ranking, that
is, eu(E) < eu(F). More precisely, eu(E) = 0, while eu(F) is strictly positive. Let us first show that
eu(E) = 0. Given that P(h) > t,, we have P(h)u,, > P(—h)u,,, so max[P(h)u,,, P(=h)u,,] = P(h)u,,.
Moreover, given that P(hle) > P(h) and thus P(=hle) < P(=h), we also have: P(h|e)u,, >
P(h)u,, > P(=h)u,, > P(=h|e)u,, which implies:

u(e) = max[P(h|e)u,, P(=h|e)u,,] — max[P(h)u,, P(=h)u,,]

(A33)
= P(hle)u,, — P(h)u,,.

As for the negative test result e, note that by Bayes’s theorem and our probability assignments:

P(ze|=h)P(~h)
P(=e|=h)P(=h) + P(=e|h)P(h)
P(=h)

_'h)urn
<_|h) P(h)ulp P(h>

_ P
= Pen(1+ )

Uy

P(=h|-e) =

u
=7 (A34)
Uy + Uy

which simply equals 7, (because uz, = uy, =0). So P(=h|-e) = t,, and thus P(~h|=e)u,, = P(h|-e)u,,.
This in turn implies:

u(=e) = max|[P(h|=e)u,,, P(~h|=e)u,,] — max[P(h)u,,, P(~h)u,,]
= P(h|=e)u,, — P(h)u,,. (A35)

Putting all the foregoing together yields:

eu(E) = u(e)P(e) + u(—e)P(—e)
= (P(hle)u,, — P(h)uy,)P(e) + (P(h|=~e)u,, — P(h)u,,)P(=e)
= (P(hle)P(e) — P(h)P(e) + P(h|=e)P(=e) = P(h)P(=e))uy,
= (P(h) = P(h))uy, = 0. (A36)
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Regarding Test F, we still have P(h|f)u,, > P(h)u,, > P(=h)u,, > P(=h|f)u,, and therefore:
() = max Pt P(~h|fity] = max [P(R)uty P()u, ] = Pty = PRty (A3T)
But on the other hand, because P(—f|h) =

_ P(=f|h)P(h) _ Uy
P(hl~f) = P(=e|h)P(h) + P(=f|=h)P(=h) ~ 0< Uy + Uy L (A38)

So P(h|=f) < t,, and thus P(h|=f)u,, < P(=h|~f)uy,, therefore

P(h|f)uyP(f) + P(~h|~f )uyP(~f) = P(R)uy, > P(R|f)uy, P(f)
+ P(h|=~f )uy, P(~f) = P(R)uy,
P(RIf)uypP(f) + P(~h|~f )umP(~f) = P(R)uy, > 0
P(hIf)uypP(f) + P(=h|=f )uy P(=f) = P(R)uy, (P(f) + P(=f)) > 0
(FIP(f) + u(=f)P(=f) >0
eu(F) > 0. (A39)

<

O
Proof of Result 6. Let H = (h, —h) be a hypothesis space associated with a disease and let £ and F'be
two diagnostic tests for H with equal likelihood difference, A(E) = AM(F). Then the following holds:

i. If P(—e|-h) > P(—f|—h), then P(hle) > P(h|f); that is, if E has higher specificity than F,
then E has a higher positive predictive value than F.

ii. If P(elh) > P(f|h), then P(-h|-e) > P(—h|—f); that is, if E has higher sensitivity than F,
then E has a higher negative predictive value than F.

Proof. (i) Specificity clause: To prove the first part of this result, we will calculate the posterior
P(hle) as a function of A, the specificity P(—e|-h) and the base rate P(h). We set « = 1 —
P(—e|=h) = P(e|—h). Then the sensitivity of E is given by P(e[h) = A + o Given this, the posterior
probability P(h|e) can be calculated as

P(Hle) = ’J@I'f():;’“‘)

P(e|h)P(h)
P(e|h)P(h) + P(e|=h)P(=h)
_ (A + oa)P(h)
v+ oc) (h) + a(1 — P(h))

AP(h) + aP(h)
7»P(h) + aP(h) + o — aP(h))
_ AP(h) + aP(h)

=P+ (A40)

Suppose we have two tests E and F with ay = 1 — P(=e|=h) and o, = 1 — P(=f|=h). If
P(—e|=h) > P(=f|—h), that is, if E has higher specificity than F, then a; < a,. For oy < o, we have

(Appendix continues)
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oA — o AP(h) < aph — apAP(h)
oA + AP (h) < aph + oy AP(h)
AMP(h) + oA + uAP(h) + ooy < A2P(Rh) + aph + o AP(h) + ot
(AP(h) + o) (A + o) < (AMP(h) + o) (A + ap)

A+ oy A+ oy
M) + o AP(R) + o

AP(h) + o P(h)  AP(h) + o, P(h)

AP(h) + oy AP(h) + o

P(hle) > P(h[f). (A41)

Thus, for two Tests E and F with spec(E) > spec(F), we have P(hle) > P(h|f).

(i) Sensitivity clause: Analogous to the first part of this result, we calculate the posterior P(h|—e)as a
function of A, the sensitivity P(e|k) and the base rate P(h). Wesetp = 1 — P(e|lh) = P(—e|h). Then
the specificity of E is given by P(—-e|-h) = A + P. Calculating the posterior P(h|—e) yields

P(=elh)P(h) _ P(=e|h)P(h) _ pP(h)
P(-e) P(=elh)P(h) + P(=e|=h)P(=h)  BP(h) + (B +A)(1 = P(h))
_ pP(h) _ pP(h)
" BP(h) + B+ A—PpP(h) —AP(h) B+ M1 —P(h) (A42)

P(h|-e) =

Suppose we have two Tests E and F with §; = 1 — P(e|h) and B, = 1 — P(f|h). If P(e|h) >
P(f)h), that is, if E has higher sensitivity than F, then f§; < p,. For B; < p,, we have

Bir(1 = P(h)) < BoA(1 = P(h))
BiB2 + BiA(1 = P(h)) < B1B, + PoA(1 — P(h))
Bi[B2 + M1 = P(h))] < Bo[By + M1 = P(h))]

Py < i3
Br + M1 =P(h)) By + A1 = P(h))

piP(h) < poP(h)

Bi + A1 =P(h)) B, + M1 —P(h))
P(h|—|e) < P(h|—|f) (A43)

Thus, for two Tests E and F with sens(E) > sens(F), we have P(hl—e) < P(hlf). O

Proof of Result 7. Let H = (h, —h) be the hypothesis space associated with adisease and letu be a
proper utility function for H. Let E = (e, ~e) and F = (f, =f) be two diagnostic tests for H, with M(E) =
MF). Then the following holds:

i. If P(h) < t,, and P(=el=h) > P(—f|=h), we have eu(E) > eu(F).
ii. If P(h) > t,, and P(e|h) > P(flh), we have eu(E) > eu(F).

Proof. Without loss of generality, we can assume that i, = us, = 0. We will prove this theorem separately
for pairs of useless tests, pairs of useful tests, and pairs where one test is useful and one is not.

(Appendix continues)
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Case 1: Suppose we have two useless tests E = (e, =e) and F = (f, =f). Then both tests have an
expected utility of zero, so it does not matter which of the two tests we choose and therefore both (i)
and (ii) hold for these two tests.

Case 2: To prove that the theorem is true for pairs of useful tests, we will show that the expected
utility of a test can be calculated from A(E) and a positive multiple of the test’s specificity for
P(h) < t, and from A(E) and a positive multiple of the test’s sensitivity for P(k) > ¢,. Suppose we
have a useful diagnostic Test E = {e, —e}.

i. P(h) < t,: For a base rate P(h) below the therapeutic threshold ¢,, before knowing the test result
acting on the hypothesis =/ that the disease is absent maximizes expected utility. Since Test
E is useful, we have P(h|e) > t, > P(h|-e) and the expected utility of E is thus given by

eu(E) = u,,P(hle)P(e) + u,,P(=h|=e)P(=e) — u,,P(=h). (A44)

By elementary probability calculations, we can rewrite eu(E) as

eu(E) = u,,P(e|h)P(h) + u,,P(=e|=h)P(=h) — u,,[P(e|=h) + P(=e|=h)|P(=h)
= u,,P(e|h)P(h) — u,,P(e|~h)P(=h)
= u,,P(h)[1 — P(=e|h)] — u,,P(=h)[1 — P(=e|=h)]
= uy,P(h) — u,,P(h)P(=e|h) — u,,P(—h) + u,,P(=h)P(=e|=h). (A45)

We can rewrite P(—e|h) as

1 — P(e|h) = P(—e|-h) + P(e|-h) — P(e|h) = spec(E) — ME). (A46)
This yields:
eu(E) = u,P(h) — u,P(h)[spec(E) = ME)] — u,,P(=h) + u,,P(=h)spec(E)
=y, P(R)ME) + spec(E)[uyP(=h) — w,P(R)] + uy, P(h) = uy, P(~h)
= u, P(NME) + [spec(E) = 1][uyP(=h) = uy, P(h)]. (A47)

Note that u,,P(=h) — u,,P(h) is positive, as P(h) < t,. Thus, the larger the specificity of E, the larger
the expected utility.

ii. P(h) > t.: For a base rate P(h) above the therapeutic threshold 7., before knowing the test
result acting on the hypothesis & that the disease is present maximizes expected utility.
Since Test E is useful, we have P(hle) > t, > P(h|-e) and the expected utility of E is
given by

eu(E) = u,,P(h|e)P(e) + tt, P(~h|=e)P(=e) — u,,P(h). (A48)
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Analogous to Case (i), we can rewrite eu(E) as
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i.

ii.

=Mt

pP(el)P(h) + uy, P(=e|=h)P(=h) — u,[P(e|h) + P(=e|h)|P(h)

(
=, P(~h)[1 = P(e|~h)] — u,,P()[1 = P(e]h)]
= u, P(~h) — u,, P(—~h)P(e|=h) — u,,P(h) + u,,P(h)P(e|h) (A49)
= U, P(~h) — u,, P(=h)[sens(E) — ME)] — u,,P(h) + u,,P(h)sens(E)
= u, P(-h)ME) + sens(E)[u,,P(h) — u,,P(=h)] + u,,,P(=~h) — u,,P(h)
= U, P(-h)ME) + [sens(E) — 1)[u,,P(h) — u,,,P(=h)].

Note that u,,P(h) — u,,P(—h) is positive, as P(h) > t.. Thus, the larger the sensitivity of E, the larger
the expected utility.

Case 3: To show that the theorem is also true for pairs where one test is useful and the other is not,
we will prove that it is not possible to find a pair of Tests E and F with AM(E) = A(F) such that Test E
is the one with higher specificity or sensitivity respectively, but Test E is useless while Test F'
is not.

P(h) < t,: Suppose we have a pair of diagnostic Tests E and F with ME) = MF), eu(E) =0,
and eu(F) > 0, but spec(E) > spec(F), so that choosing the test with higher specificity would
lead to choosing the useless Test E instead of the useful Test F. According to Result 6 we know
that, if E has higher specificity than F, then P(k|e) > P(h|f). According to Result 2, Test F is
useful iff P(h|=f) < t, < P(h|f). Since P(hle) > P(h|f), P(hle) has to lie above ¢, too and
since E is a diagnostic test, we know that P(h|—e) < P(h) < P(hle). Therefore, P(h|-e) <
P(h) < t. < P(hle) and thus E is useful which contradicts the assumption that E is useless.
Thus, such a pair of tests does not exist and for every pair E and F with AM(E) = MF), eu(E) =0,
and eu(F) > 0, we know that spec(E) < spec(F) and choosing the test with higher specificity
entails choosing the test with higher expected utility.

P(h) > t,: Suppose we have a pair of diagnostic Tests E and F with ME) = MF), eu(E) = 0, and
eu(F) > 0, but sens(E) > sens(F), so that choosing the test with higher sensitivity would lead to
choosing the useless Test E instead of the useful Test F. According to Result 6 we know that,
if E has higher sensitivity than F, then P(h|-e) < P(h|~f). According to Result 2, Test F is
useful iff P(h|—f) < t, < P(h|f). Since P(h|—e) < P(h|=f), P(h|-e) has to lie below ¢, too
and since E is a diagnostic test, we know that P(h|-e) < P(h) < P(hle). Therefore,
P(h|-e) < t, < P(h) < P(hle) and thus E is useful which contradicts the assumption
that E is useless. Thus, such a pair of tests does not exist and for every pair E and F with
ME) = MF), eu(E) = 0, and eu(F) > 0, we know that sens(E) < sens(F) and choosing the test with
higher sensitivity entails choosing the test with higher expected utility. O
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