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Chapter 23
Generalized Confirmation and Relevance
Measures

Vincenzo Crupi

Abstract The main point of the paper is to show how popular probabilistic
measures of incremental confirmation and statistical relevance with qualitatively
different features can be embedded smoothly in generalized parametric families.
In particular, I will show that the probability difference, log probability ratio, log
likelihood ratio, odds difference, so-called improbability difference, and Gaifman’s
measures of confirmation can all be subsumed within a convenient biparametric
continuum. One intermediate step of this project may have interest on its own, as
it provides a unified representation of graded belief of which both probabilities and
odds are special cases.

Keywords Inductive confirmation ¢ Evidential support ¢ Probabilistic relevance
* Odds * Generalized logarithm

23.1 Introduction

A high level of troponin in the blood indicates a diagnosis of myocardial infarction.
A matching DNA profile suggests that a suspect murderer may in fact be guilty.
And the detection of the Higgs boson increased the experimental evidence in favor
of so-called standard model of particle physics. In contemporary epistemology and
philosophy of science, the general notion of confirmation or evidential support is
often employed to interpret cases of all these different kinds.

Relying on a probabilistic account of graded credences, this idea can be
characterized in a rather effective and elegant way. Consider a logical language
L (finite, for simplicity), the subset L¢ of its consistent formulae, and the set P
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286 V. Crupi

of all regular probability functions defined over L.! The notion of (incremental)
confirmation or evidential support given by a piece of evidence e to a hypothesis
h (h,e € L¢) can be plausibly represented by a function C(h,e): {L¢ X L¢ X P}
— N, provided that some basic conditions are satisfied. The appropriate conditions
are natural and compelling. On the one hand, for any fixed hypothesis %, the final
probability and confirmation should always move in the same direction in the light
of data, that is, for any h,ef € L¢ and any P € P, C(h,e) z C(h,f) if and only
if P(hle) z P(h|f). Moreover, any hypothesis should be equally “non-confirmed”
by empty evidence, i.e., a tautology T, so for any &, k € L¢ and any P € P,
C(h,T) = C(k,T). These basic conditions are virtually sufficient to imply that there
exists a fixed threshold value C(T,T) (often set at 0) such that for any h,e € L¢
and any P € P, C(h,e) = C(1,7) if and only if P(hle) = P(h). The latter, in turn,
is the key and standard idea of the qualitative distinction between confirmation,
neutrality, and disconfirmation, respectively: the evidence considered, e, confirms/is
neutral for/disconfirms the hypothesis at issue, %, just in case the occurrence of e
increases/leaves untouched/decreases the initial credibility of 4 (see Crupi 2015).

Specific quantitative measures of confirmation are known to be many and diverse
(see, e.g., Brossel 2013; Glass 2013; Roche and Shogenji 2014), but the most
popular options can be generated by a combination of three simple steps. (i) First,
one can choose between two major ways to represent the credibility of a statement
X, i.e., as the simple probability of x, P(x), or as the odds for x and against not-x,
O(x) = P(x)/P(—x). (Conditional odds are as expected: O(x|y) = P(x|y)/P(—x|y).)
Probabilities and odds are interdefinable but not identical. According to a useful
metaphor by Joyce (2004), “the difference between ‘probability talk’ and ‘odds
talk’ corresponds to the difference between saying ‘we are two thirds of the way
there’ and saying ‘we have gone twice as far as we have yet to go’”. (ii) Second,
one can convey confirmation from e to h directly, as it were, by the increase in the
credibility of 4 provided by e. Or one can do that indirectly, i.e., by the decrease of
the credibility of the negation, —A, given e. (iii) Finally, two distinct functional forms
are canonical to formalize how the relevant representation of posterior credibility
departs from the prior, namely, the simple algebraic difference or the logarithm of
the ratio (both of which conveniently yield O as a neutrality value).

In the probability formalism, the direct and indirect difference collapse on one
single measure:

D (h,e) = P (hle) — P(h) = P (=h) — P (—hle)

'A regular probability function never assigns probability 0 to a statement unless it expresses a
logical falsehood (i.e., for any @ € L¢, P(ar) > 0). Regularity can be motivated as a way to represent
credences that are non-dogmatic as concerns L¢ (see Howson 2000, p. 70). It is known to be a
convenient but not entirely innocent assumption (see Festa 1999; Kuipers 2000 for discussion; also
see Pruss 2013).
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23 Generalized Confirmation and Relevance Measures 287

Originally proposed by Carnap (1950/1962), D(h,e) is a natural and widespread
way to quantify confirmation (Milne 2012). One does not have the same kind of
convergence, however, if the log ratio is employed as a functional form. In this case,
the direct and indirect forms generate, respectively:

_ . [P(le)
R (h,e) = ln|: 20 ]

_ .| P(=h)
o=

Once forcefully advocated by Milne (1996), R(h,e) can be seen as conveying
key tenets of so-called “likelihoodist” position about evidential reasoning, as
suggested by Fitelson (2007, p. 478) (see Royall 1997 for a classical statement of
likelihoodism, and Chandler 2013 and Sober 1990 for consonant arguments and
inclinations; also see Iranzo and Martinez de Lejarza 2012). Measures ordinally
equivalent to G(h,e), in turn, have been suggested and discussed by Gaifman (1979),
Rips (2001), and Crupi and Tentori (2013, 2014).?

In the odds formalism, the direct and indirect difference measures are not
equivalent:

1
P(=hle) P (=h)

1 1
P(h) P (hle)

OD (h,e) = O (hle) — O(h) =

ID (h,e) = O (=h) — O (—hle) =

The odds difference measure OD(h,e) appears in Hajek and Joyce (2008, p.
122), while a thorough discussion of ID(h,e) (labelled “improbability difference”)
has been recently provided by Festa and Cevolani (2016). Finally, when the log
ratio form is applied to the odds formalism, the direct and indirect measurements
do collapse on the last, highly influential element of our list, the (log) odds ratio
measure, also equivalent to so-called (log) likelihood ratio (Good 1950; Heckerman
1988; Fitelson 2001; Park 2014):

C rowlel  [OmT . [Pl
OR () = I“[ ) ] = ln[owue)] = 1“[P(e|ﬁh)}

We therefore have six popular and non-equivalent measures of incremental
confirmation arising from a general scheme (see Table 23.1 for a summary).
They have been shown elsewhere to exhibit diverging properties of theoretical
significance (Brossel 2013; Crupi et al. 2007, 2010; Festa and Cevolani 2016). In

2Two ordinally equivalent measures C and C* are such that for any hk.ef € L, and any P € P,
C(h,e) ; C(k) if and only if C*(h,e) ; C*(kf).
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288 V. Crupi

Table 23.1 A generating schema for popular measures of incremental confirmation or evidential
support

probability odds
direct vs. inderect assessment direct vs.inderect assessment
P(hle) vs. P(h) P(—h) vs. P~(h|e) O(hle) vs. O(h) O(—h) vs. O(—hle)
difference vs. log ratio | difference vs. log ratio | difference vs. log ratio | difference vs. log ratio
D(h,e) R(h,e) D(h,e) G(h.e) OD(he) | OR(he) | OR(he)
P(hle) - P(h) In[P(hle)/P(h)] again In[P(~hY/P(~hle)] | O(hle)—O(h) | In[OGHle)/Oh) again

the present contribution, my aim is solely one of theoretical unification. The main
contribution will be the definition of a bi-parametric continuum of confirmation
measures by which all of the classical options mentioned can be recovered as special
cases.

23.2 Generalized Confirmation Measures

The main technical tool to achieve the parametric generalization of incremental
confirmation measures that we look for is the following function (x > 0):

X =1

Iny(x) =

Functions such as /n, are often called generalized logarithms, because the natural
logarithm, In(x), arises as a special case in the limit (when r — 0). This fundamental
property can be derived as follows. We posit x = 1—y and first consider x < 1, so
that |-y| < 1 (recall from above that x is strictly positive). Then we have:

lim {In,(x)} = lim {In, (1 — y)} = lim { l [(1—=y) — 1]}
r—0 t—0 r—>0(r

By the binomial expansion of (1 —y)”", we obtain:

N2 _ _ —w)3 _ _ _ 04
lim{l[_l+(l+r(_w+r(r—m—,) L= D= | = D=2 =3 (=) +)}§
=0 | r 2! 3! 41

=Dy |, t=De=2 (= | t=D=2)—3 (="
2! + 3l + 41

=}L‘“U%(—Y)+ +§

. —r=D(=)’ | c=Dr=2 (=) —C=De=2c=3
_ 3‘30}‘_”_ s ; = 2 +}
_ =) | 2=y 3=y’
-+ -+
Y 03 Y
=(_y)_(»)+(y)_(>) 4.
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23 Generalized Confirmation and Relevance Measures 289

which is just the series expansion of /n(l1—y)= In(x) (recall that |-y| < 1,
thus the argument of /n is positive). For the case x > 1, one can posit x =

1)
1/(1—y), so that again |-y| < 1 and compute lintl) {in,(x)} = lin(l) { %} =

lin(1) {% [(1—y)" — l]}, thus getting the same result from a similar derivation.

Hence, we will assume In,(x) = In(x) for r = 0. Thus defined, the generalized
logarithmic function has mathematical meaning for all real values of r, but our
main focus in what follows will be on r € [—1,1]. This kind of functions have
been employed to generalize the classical (Bolzmann-Shannon) formalism for
entropy, with significant applications in information theory, statistical mechanics,
and beyond (Havrda and Charvat 1967; Tsallis 1988; Keylock 2005). Our main
technical point here is that the whole set of six confirmation measures above can be
embedded in the following biparametric continuum:

Cirs) (h,€) = Ingln, [O (hle) + 1] — Ingn, [O(h) + 1]

Provided that r, s # 0, C(,.5) can be further manipulated to yield the following
form:

Cy (hoe) = % (O (hle) + 1 — 1T — [(O(h) + 1) — 1I')

We then have:

C11)(h,e) =D (h,e)
Co.1) (h,e) = G (h,e)
Ca.1y (h,e) = OD (h, e)
Ci<10) (h,e) =R(h,e)
Ca.0) (h,e) = OR (h,e)

C—1-1) (h,e) = C—1) (h,e) = ID (h,e)

A summary representation is given in Fig. 23.1. Some significant implications of
this formalism and some interesting issues it raises are addressed in the next section.
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s
D(h,e) G(h,e) 0D(h,e)
, A *
| !
R(h,e) i i OR(h,e)
-1 | 0 11 r
| !
ID(h,e) | ! ID(h,e)
L °
-1

Fig. 23.1 The C. family of confirmation measures is represented in a Cartesian plane with
values of parameter r and of parameter s lying on the x— and y-axis, respectively. Each point in the
plane corresponds to a specific confirmation measure. Special cases of interest are highlighted

23.3 Discussion

It is quite easy to verify that the basic features of probabilistic incremental
confirmation hold for the whole continuum Cj, ), namely: (i) for any h.ef € L¢
and any P € P, C(,.5\(h,e) = C.5)(hf) if and only if P(hle) = P(h|f), and (ii) for any
h,k € L¢ and any P € P, C,.5(h,T) = C(r.5(k,T) (O is the neutrality value). So each
instance of C,) is a well-behaved confirmation measure in this fundamental sense.

The role of parameter r in the construction of C, is perhaps of some interest
of its own: it unifies the probability and the odds formalism. In fact, for any a
€ Lc and any P € P, In,[O(a) + 1] = P(a) for r = —1 and In,[O(a) + 1] =
O(a) for r = 1.3 So confirmation measures in C 5 relate the prior and posterior

3A different way to connect and subsume probabilities and odds was already suggested by Festa
(2008). Festa defined a parametric family of “belief functions” B, (x) = P(x)/[1 4+ aP(x)] with «
€[—1,00), so that B_j(x) = O(x) and By(x) = P(x).
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23 Generalized Confirmation and Relevance Measures 291

values of these generalized credence functions. This explains the apparent puzzle
of the ID(h,e) measure, which occurs twice in the parameter space, for both r
= —1 and r = 1. That is because, as already pointed out by Festa and Cevolani
(2016), the functional form of ID(h,e) is remarkably invariant across the probability
vs. odds representation of credences: 1/P(h)—1/P(h|e) = 1/0(h)—1/0(hle). Also of
interest, the generalized credence function /n,[O(a) + 1] has a upper bound (just like
probability) for r < 0 (the bound being —1/r), while it has no upper bound (just like
odds) for » > 0. One worthwhile theoretical idea might be to check whether there
exist r-parametrized versions of the probability axioms by which these generalized
functions (thus including odds) can be characterized.
A similar issue arises as concerns the following:

_ %zn,[0<h|e)+1]}_ %[0(h|e)+1r—1
Cooy(he)=In{ — =1 =1In .
i [00) + 1] o) + 171

This is represented by a line along the x axis in Fig. 23.1. Crupi et al. (2013) have
provided rather simple axiomatic characterizations of the most prominent special
cases of this one-parameter subclass of C ), namely R(h,e) (for r = —1) and
OR(h,e) (for r = 1). Here again, maybe a unified formalism may allow for a more
general result and the subsumption of the ones already available.

Another interesting exercise is to fix r instead, and let s vary, as in the following:

Ci-1.5) (h.€) = Ing [P (hle)] — Ing [P(h)] = % [P (hle)’ = P(h)’]

This is represented in Fig. 23.1 by the vertical line connecting ID(h,e), R(h,e), and
D(h,e). Parameter s determines the specific functional form by which the posterior
and prior probabilities, P(h|e) and P(h), are related. The most popular cases—simple
algebraic difference and log of the ratio—correspond to s = 1 and s — 0O (in the
limit), respectively.

Here, one interesting connection occurs with work on so-called “Matthew
effects” in probabilistic confirmation theory. In fact, Festa (2012) and Festa and
Cevolani (2016) discussed the Popperian idea that, other things being equal,
hypotheses that are initially /ess probable should get a confirmational bonus over
more probable ones, to the extent that a lower prior probability indicates greater
content and “testability” (also see Roche 2014; Sprenger 2016a). Following Kuipers
(2000, p. 25), this may be called an anti-Matthew effect (a Matthew effect being
the opposite, i.e., a confirmational advantage for hypotheses with a higher prior).
Festa (2012) noticed that Matthew and anti-Matthew effects characterize D(h,e)
and ID(h,e), respectively, while measure R(h,e) is “Matthew-independent” in his
terminology. In our generalized framework, one might thus explore whether, for
r = —1 (thatis, for C_, 4 as above), s = 0 represents a critical threshold to establish
the Matthew behavior of a measure, at least for s € [—1,1]. (If so, then perhaps the
absolute value of s may serve as a suitable index of how strongly the corresponding
measure exhibits Matthew vs. anti-Matthew effects, depending on whether s itself is
positive vs. negative).
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23.4 A Straightforward Application to Other Relevance
Measures

Following a terminological suggestion by Schippers and Siebel (2015, p. 14), we
can label “counterfactual” the following counterpart variants of our six confirmation
measures, where prior values P(h) and O(h) are replaced by P(h|—e) and O(h|—e),
respectively:

D* (h,e) = P (hle) — P (h|—e)

. [ P(hle)
R he) =In [P(hhe)}
. [P (=hl=e)
G(h’e)_l”[m}

OD* (h, ) = O (hle) — O (h|—e)

ID* (h,e) = O (—h|—e) — O (—hle)

OR* (h,e) = In [m}

O (h|—e)

All of these measures are null for probabilistically independent pairs 4,e, and
positive vs. negative in case h and e are positively vs. negatively associated.
However, they do not generally fulfil the condition that they are higher/equal/lower
for h,e as compared to A,f just depending on whether P(hle) E P(h|f) (see Crupi et
al. 2007; Climenhaga 2013). So they still are measures of the probabilistic relevance
between /1 and e, but not in the sense of incremental confirmation. Still, most of
them are indeed found at various places in the literature. Hajek and Joyce (2008,
p. 122), for instance, mention four—D*(h,e), R*(h,e), OD*(h,e), and OR*(h,e)—as
candidate measures of “probative value”. Moreover, three of these play an important
role in contemporary epidemiology. For let h be a target occurrence of interest and
e a relevant experimental intervention or environmental exposure. Then D*(h,e)
just is the standard measure of the absolute change in risk of & due to e and
R*(h,e) an isotone transformation of the relative change in risk (see, for example,
Barratt et al. 2004). OR*(h,e), in turn, is simply the log of what is generally
known as “the odds ratio” in the epidemiology literature (see A’Court et al. 2012;
Cornfield 1951; Milne 2012). Another well-known measure of association, Yule’s
0, is also ordinally equivalent to OR*(h,e) (Garson 2012; Yule 1900). Moreover,
according to Fitelson and Hitchcock’s (2011) survey, some of these measures have
been employed to quantify causal strength (with 2 now denoting an outcome and
e its causal antecedent): Eells (1991) would support D*(h,e) and Lewis (1986)
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23 Generalized Confirmation and Relevance Measures 293

R*(h,e), while both Cheng’s (1997) and Good’s (1961, 1962) preferred measures
are ordinally equivalent to G*(h,e). Some relevant axiomatic characterizations can
be found in Sprenger (2016b). Finally, Schupbach and Sprenger’s (2011) favorite
measure of explanatory power is ordinally equivalent to R*(h,e) (also see Crupi and
Tentori 2012 and Cohen 2015 for discussion). It is then of potential interest to notice
that we can embed all of these measures as special cases of the following, in a way
that is strictly parallel to our earlier treatment of incremental confirmation:

C(..y) (h,e) = Ingln, [O (hle) + 1] — Inln, [O (h|—e) + 1]

To have a summary illustration, one simply has to refer back to Fig. 23.1 and
replace each specific measure by its counterfactual variation, e.g., with D*(h,e)
instead of D(h,e).
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