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Abstract.	The	main	point	of	the	paper	is	to	show	how	popular	probabilistic	measures	of	
incremental	confirmation	and	statistical	relevance	with	qualitatively	different	features	can	be	
embedded	smoothly	in	generalized	parametric	families.	In	particular,	I	will	show	that	the	
probability	difference,	log	probability	ratio,	log	likelihood	ratio,	odds	difference,	so-called	
improbability	difference,	and	Gaifman’s	measures	of	confirmation	can	all	be	subsumed	within	
a	convenient	biparametric	continuum.	One	intermediate	step	of	this	project	may	have	interest	
on	its	own,	as	it	provides	a	unified	representation	of	graded	belief	of	which	both	probabilities	
and	odds	are	special	cases.							
	
Keywords:	inductive	confirmation;	evidential	support;	probabilistic	relevance;	odds;	
generalized	logarithm.	
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Generalized	confirmation	and	relevance	measures	
	

	

1.	Introduction	

A	high	level	of	troponin	in	the	blood	indicates	a	diagnosis	of	myocardial	infarction.	A	matching	
DNA	profile	suggests	that	a	suspect	murderer	may	in	fact	be	guilty.	And	the	detection	of	the	
Higgs	boson	increased	the	experimental	evidence	in	favor	of	so-called	standard	model	of	
particle	physics.	In	contemporary	epistemology	and	philosophy	of	science,	the	general	notion	
of	confirmation	or	evidential	support	is	often	employed	to	interpret	cases	of	all	these	different	
kinds.		
Relying	on	a	probabilistic	account	of	graded	credences,	this	idea	can	be	characterized	in	a	
rather	effective	and	elegant	way.	Consider	a	logical	language	L	(finite,	for	simplicity),	the	
subset	LC	of	its	consistent	formulae,	and	the	set	P	of	all	regular	probability	functions	defined	
over	L.1	The	notion	of	(incremental)	confirmation	or	evidential	support	given	by	a	piece	of	
evidence	e	to	a	hypothesis	h	(h,e	Î	LC)	can	be	plausibly	represented	by	a	function	C(h,e)	:	{LC	×	
LC	×	P}	®	Â,	provided	that	some	basic	conditions	are	satisfied.	The	appropriate	conditions	are	
natural	and	compelling.	On	the	one	hand,	for	any	fixed	hypothesis	h,	the	final	probability	and	
confirmation	should	always	move	in	the	same	direction	in	the	light	of	data,	that	is,	for	any	h,e,f	
Î	LC	and	any	P	Î	P,	C(h,e)	⋛	C(h,f)	if	and	only	if	P(h|e)	⋛	P(h|f).	Moreover,	any	hypothesis	
should	be	equally	“non-confirmed”	by	empty	evidence,	i.e.,	a	tautology	⊺,	so	for	any	h,	k	Î	LC	
and	any	P	Î	P,	C(h,⊺)	=	C(k,⊺).	These	basic	conditions	are	virtually	sufficient	to	imply	that	there	
exists	a	fixed	threshold	value	C(⊺,⊺)	(often	set	at	0)	such	that	for	any	h,e	Î	LC	and	any	P	Î	P,	
C(h,e)	⋛	C(⊺,⊺)	if	and	only	if	P(h|e)	⋛	P(h).	The	latter,	in	turn,	is	the	key	and	standard	idea	of	
the	qualitative	distinction	between	confirmation,	neutrality,	and	disconfirmation,	
respectively:	the	evidence	considered,	e,	confirms	/	is	neutral	for	/	disconfirms	the	hypothesis	
at	issue,	h,	just	in	case	the	occurrence	of	e	increases	/	leaves	untouched	/	decreases	the	initial	
credibility	of	h	(see	Crupi	2015).	
Specific	quantitative	measures	of	confirmation	are	known	to	be	many	and	diverse	(see,	e.g.,	
Brössel	2013,	Glass	2013,	Roche	and	Shogenji	2014),	but	the	most	popular	options	can	be	
generated	by	a	combination	of	three	simple	steps.	(i)	First,	one	can	choose	between	two	major	
ways	to	represent	the	credibility	of	a	statement	x,	i.e.,	as	the	simple	probability	of	x,	P(x),	or	as	
the	odds	for	x	and	against	not-x,	O(x)	=	P(x)/P(¬x).	(Conditional	odds	are	as	expected:	O(x|y)	=	
P(x|y)/P(¬x|y).)	Probabilities	and	odds	are	interdefinable	but	not	identical.	According	to	a	

                                                
1	A	regular	probability	function	never	assigns	probabiity	0	to	a	statement	unless	it	expresses	a	logical	falsehood	
(i.e.,	for	any	a	Î	LC,	P(a)	>	0).	Regularity	can	be	motivated	as	a	way	to	represent	credences	that	are	non-dogmatic	
as	concerns	LC	(see	Howson	2000,	p.	70).	It	is	known	to	be	a	convenient	but	not	entirely	innocent	assumption	
(see	Festa	1999	and	Kuipers	2000	for	discussion;	also	see	Pruss	2013).		
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useful	metaphor	by	Joyce	(2004),	“the	difference	between	‘probability	talk’	and	‘odds	talk’	
corresponds	to	the	difference	between	saying	‘we	are	two	thirds	of	the	way	there’	and	saying	
‘we	have	gone	twice	as	far	as	we	have	yet	to	go’”.	(ii)	Second,	one	can	convey	confirmation	
from	e	to	h	directly,	as	it	were,	by	the	increase	in	the	credibility	of	h	provided	by	e.	Or	one	can	
do	that	indirectly,	i.e.,	by	the	decrease	of	the	credibility	of	the	negation,	¬h,	given	e.	(iii)	Finally,	
two	distinct	functional	forms	are	canonical	to	formalize	how	the	relevant	representation	of	
posterior	credibility	departs	from	the	prior,	namely,	the	simple	algebraic	difference	or	the	
logarithm	of	the	ratio	(both	of	which	conveniently	yield	0	as	a	neutrality	value).		
In	the	probability	formalism,	the	direct	and	indirect	difference	collapse	on	one	single	measure:	

𝐷 ℎ, 𝑒 = 𝑃 ℎ 𝑒 − 𝑃 ℎ = 𝑃 ¬ℎ − 𝑃 ¬ℎ 𝑒 	

Originally	proposed	by	Carnap	(1950/62),	D(h,e)	is	a	natural	and	widespread	way	to	quantify	
confirmation	(Milne	2012).	One	does	not	have	the	same	kind	of	convergence,	however,	if	the	
log	ratio	is	employed	as	a	functional	form.	In	this	case,	the	direct	and	indirect	forms	generate,	
respectively:	

𝑅 ℎ, 𝑒 = 𝑙𝑛
𝑃 ℎ 𝑒
𝑃 ℎ 	

𝐺 ℎ, 𝑒 = 𝑙𝑛
𝑃(¬ℎ)
𝑃 ¬ℎ|𝑒 	

Once	forcefully	advocated	by	Milne	(1996),	R(h,e)	can	be	seen	as	conveying	key	tenets	of	so-
called	“likelihoodist”	position	about	evidential	reasoning,	as	suggested	by	Fitelson	(2007,	p.	
478)	(see	Royall	1997	for	a	classical	statement	of	likelihoodism,	and	Chandler	2013	and	Sober	
1990	for	consonant	arguments	and	inclinations;	also	see	Iranzo	and	Martínez	de	Lejarza	
2012).	Measures	ordinally	equivalent	to	G(h,e),	in	turn,	have	been	suggested	and	discussed	by	
Gaifman	(1979),	Rips	(2001),	and	Crupi	and	Tentori	(2013,	2014).2		
In	the	odds	formalism,	the	direct	and	indirect	difference	measures	are	not	equivalent:	

𝑂𝐷 ℎ, 𝑒 = 𝑂 ℎ 𝑒 − 𝑂 ℎ =
1

𝑃 ¬ℎ|𝑒 −
1

𝑃 ¬ℎ 	

𝐼𝐷 ℎ, 𝑒 = 𝑂(¬ℎ) − 𝑂 ¬ℎ|𝑒 =
1

𝑃 ℎ −
1

𝑃 ℎ|𝑒 	

The	odds	difference	measure	OD(h,e)	appears	in	Hájek	and	Joyce	(2008,	p.	122),	while	a	
thorough	discussion	of	ID(h,e)	(labelled	“improbability	difference”)	has	been	recently	
provided	by	Festa	and	Cevolani	(2016).	Finally,	when	the	log	ratio	form	is	applied	to	the	odds	
formalism,	the	direct	and	indirect	measurements	do	collapse	on	the	last,	highly	influential	

                                                
2	Two	ordinally	equivalent	measures	C	and	C*	are	such	that	for	any	h,k,e,f	Î	Lc	and	any	P	Î	P,	C(h,e)	⋛	C(k,f)	if	and	
only	if	C*(h,e)	⋛	C*(k,f).		
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element	of	our	list,	the	(log)	odds	ratio	measure,	also	equivalent	to	so-called	(log)	likelihood	
ratio	(Good	1950,	Heckerman	1988,	Fitelson	2001,	Park	2014):	

𝑂𝑅 ℎ, 𝑒 = 𝑙𝑛
𝑂 ℎ 𝑒
𝑂 ℎ = 𝑙𝑛

𝑂(¬ℎ)
𝑂 ¬ℎ|𝑒 = 𝑙𝑛

𝑃(𝑒|ℎ)
𝑃 𝑒|¬ℎ 	

We	therefore	have	six	popular	and	non-equivalent	measures	of	incremental	confirmation	
arising	from	a	general	scheme	(see	Table	1	for	a	summary).	They	have	been	shown	elsewhere	
to	exhibit	diverging	properties	of	theoretical	significance	(Brössel	2013;	Crupi,	Tentori,	and	
Gonzalez	2007;	Crupi,	Festa,	and	Buttasi,	2010;	Festa	and	Cevolani	2016).	In	the	present	
contribution,	my	aim	is	solely	one	of	theoretical	unification.	The	main	contribution	will	be	the	
definition	of	a	bi-parametric	continuum	of	confirmation	measures	by	which	all	of	the	classical	
options	mentioned	can	be	recovered	as	special	cases.			
	

probability	 odds	

direct	vs.	indirect	assessment		

P(h|e)	vs.	P(h)																					P(¬h)	vs.	P(¬h|e)	

direct	vs.	indirect	assessment		

O(h|e)	vs.	O(h)																						O(¬h)	vs.	O(¬h|e)	

difference	vs.	log	ratio	 difference	vs.	log	ratio	 difference	vs.	log	ratio	 difference	vs.	log	ratio	

D(h,e)	
P(h|e)	–	P(h)	

R(h,e)	
ln[P(h|e)/P(h)]	

D(h,e)	
again	

G(h,e)	
ln[P(¬h)/P(¬h|e)]	

OD(h,e)	
O(h|e)	–	O(h)	

OR(h,e)	
ln[O(h|e)/O(h)]	

ID(h,e)	
O(¬h)	–	O(¬h|e)	

OR(h,e)	
again	

Table	1.	A	generating	schema	for	popular	measures	of	incremental	confirmation	or	evidential	support.	
	
	
2.	Generalized	confirmation	measures		

The	main	technical	tool	to	achieve	the	parametric	generalization	of	incremental	confirmation	
measures	that	we	look	for	is	the	following	function	(x	>	0):	

𝑙𝑛3 𝑥 =
𝑥3 − 1
𝑟 	

Functions	such	as	lnr	are	often	called	generalized	logarithms,	because	the	natural	logarithm,	
ln(x),	arises	as	a	special	case	in	the	limit	(when	r	®	0).	This	fundamental	property	can	be	
derived	as	follows.	We	posit	x	=	1	–	y	and	first	consider	x	≤	1,	so	that	|–y|	<	1	(recall	from	
above	that	x	is	strictly	positive).	Then	we	have:	

lim
3→:

𝑙𝑛3(𝑥) = lim
;→:

𝑙𝑛3(1 − 𝑦) = lim
3→:

=
3
(1 − 𝑦)3 − 1 		

By	the	binomial	expansion	of	(1 − 𝑦)3 ,	we	obtain:	
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lim
3→:

=
3
−1 + 1 + 𝑟 −𝑦 + 3 3?= ?@ A

B!
+ 3 3?= 3?B ?@ D

E!
+ 3 3?= 3?B 3?E ?@ F

G!
+ ⋯ 		

= lim
3→:

−𝑦 + 3?= ?@ A

B!
+ 3?= 3?B ?@ D

E!
+ 3?= 3?B 3?E ?@ F

G!
+ ⋯ 		

= lim
3→:

−𝑦 − ? 3?= ?@ A

B!
+ 3?= 3?B ?@ D

E!
− ? 3?= 3?B 3?E ?@ F

G!
+ ⋯ 		

= −𝑦 − ?@ A

B!
+ B! ?@ D

E!
− E! ?@ F

G!
+ ⋯		

= −𝑦 − ?@ A

B
+ ?@ D

E
− ?@ F

G
+ ⋯		

which	is	just	the	series	expansion	of	𝑙𝑛 1 − 𝑦 = 𝑙𝑛(𝑥)	(recall	that	|–y|	<	1,	thus	the	argument	of	
ln	is	positive).	For	the	case	x	>	1,	one	can	posit	x	=	1/(1	–	y),	so	that	again	|–y|	<	1	and	compute	

lim
3→:

𝑙𝑛3(𝑥) = lim
3→:

I
IJK

L
?=

3
= lim

3→:

=
3
(1 − 𝑦)?3 − 1 ,	thus	getting	the	same	result	from	a	similar	

derivation.	
Hence,	we	will	assume	lnr(x)	=	ln(x)	for	r	=	0.	Thus	defined,	the	generalized	logarithmic	
function	has	mathematical	meaning	for	all	real	values	of	r,	but	our	main	focus	in	what	follows	
will	be	on	r	Î	[–1,1].	This	kind	of	functions	have	been	employed	to	generalize	the	classical	
(Bolzmann-Shannon)	formalism	for	entropy,	with	significant	applications	in	information	
theory,	statistical	mechanics,	and	beyond	(Havrda	and	Charvát	1967,	Tsallis	1988,	and	
Keylock	2005).	Our	main	technical	point	here	is	that	the	whole	set	of	six	confirmation	
measures	above	can	be	embedded	in	the	following	biparametric	continuum:	

𝐶 3,N ℎ, 𝑒 = 𝑙𝑛N𝑙𝑛3 𝑂 ℎ 𝑒 + 1 − 𝑙𝑛N𝑙𝑛3 𝑂 ℎ + 1 	

Provided	that	r,	s	≠	0,	C(r,s)	can	be	further	manipulated	to	yield	the	following	form:	

𝐶 3,N ℎ, 𝑒 = =
N 3O

𝑂 ℎ 𝑒 + 1 3 − 1 N − 𝑂(ℎ) + 1 3 − 1 N 			 	

We	then	have:	

𝐶 ?=,= ℎ, 𝑒 = 𝐷(ℎ, 𝑒)	
𝐶 :,= ℎ, 𝑒 = 𝐺(ℎ, 𝑒)	
𝐶 =,= ℎ, 𝑒 = 𝑂𝐷(ℎ, 𝑒)	
𝐶 ?=,: ℎ, 𝑒 = 𝑅(ℎ, 𝑒)	
𝐶 =,: ℎ, 𝑒 = 𝑂𝑅(ℎ, 𝑒)	
𝐶 ?=,?= ℎ, 𝑒 = 𝐶 =,?= ℎ, 𝑒 = 𝐼𝐷(ℎ, 𝑒)	

A	summary	representation	is	given	in	Figure	1.	Some	significant	implications	of	this	formalism	
and	some	interesting	issues	it	raises	are	addressed	in	the	next	section.	
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Figure	1.	The	C(r,s)	family	of	confirmation	measures	is	represented	in	a	Cartesian	plane	with	values	of	parameter	r	
and	 of	 parameter	 s	 lying	 on	 the	 x–	 and	y–axis,	 respectively.	 Each	point	 in	 the	plane	 corresponds	 to	 a	 specific	
confirmation	measure.	Special	cases	of	interest	are	highlighted.	

	
3.	Discussion	

It	is	quite	easy	to	verify	that	the	basic	features	of	probabilistic	incremental	confirmation	hold	
for	the	whole	continuum	C(r,s),	namely:	(i)	for	any	h,e,f	Î	LC	and	any	P	Î	P,	C(r,s)(h,e)	⋛	C(r,s)(h,f)	
if	and	only	if	P(h|e)	⋛	P(h|f),	and	(ii)	for	any	h,k	Î	LC	and	any	P	Î	P,	C(r,s)(h,⊺)	=	C(r,s)(k,⊺)	(0	is	
the	neutrality	value).	So	each	instance	of	C(r,s)	is	a	well-behaved	confirmation	measure	in	this	
fundamental	sense.		
The	role	of	parameter	r	in	the	construction	of	C(r,s)	is	perhaps	of	some	interest	of	its	own:	it	
unifies	the	probability	and	the	odds	formalism.	In	fact,	for	any	a	Î	LC	and	any	P	Î	P,	lnr[O(a)	+	
1]	=	P(a)	for	r	=	–1	and	lnr[O(a)	+	1]	=	O(a)	for	r	=	1.3	So	confirmation	measures	in	C(r,s)	relate	
the	prior	and	posterior	values	of	these	generalized	credence	functions.	This	explains	the	
apparent	puzzle	of	the	ID(h,e)	measure,	which	occurs	twice	in	the	parameter	space,	for	both	r	
=	–1	and	r	=	1.	That	is	because,	as	already	pointed	out	by	Festa	and	Cevolani	(2016),	the	
                                                
3	A	different	way	to	connect	and	subsume	probabilities	and	odds	was	already	suggested	by	Festa	(2008).	Festa	
defined	a	parametric	family	of	“belief	functions”	Ba(x)	=	P(x)/[1	+	aP(x)]	with	a	Î[–1,¥),	so	that	B–1(x)	=	O(x)	and	
B0(x)	=	P(x).		
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functional	form	of	ID(h,e)	is	remarkably	invariant	across	the	probability	vs.	odds	
representation	of	credences:	1/P(h)	–	1/P(h|e)	=	1/O(h)	–	1/O(h|e).	Also	of	interest,	the	
generalized	credence	function	lnr[O(a)	+	1]	has	a	upper	bound	(just	like	probability)	for	r	<	0	
(the	bound	being	–1/r),	while	it	has	no	upper	bound	(just	like	odds)	for	r	≥	0.	One	worthwhile	
theoretical	idea	might	be	to	check	whether	there	exist	r-parametrized	versions	of	the	
probability	axioms	by	which	these	generalized	functions	(thus	including	odds)	can	be	
characterized.		
A	similar	issue	arises	as	concerns	the	following:	

𝐶(3,:) ℎ, 𝑒 = 𝑙𝑛
𝑙𝑛3 𝑂 ℎ 𝑒 + 1
𝑙𝑛3 𝑂 ℎ + 1 = 𝑙𝑛

𝑂 ℎ 𝑒 + 1 3 − 1
𝑂(ℎ) + 1 3 − 1 	

This	is	represented	by	a	line	along	the	x	axis	in	Figure	1.	Crupi,	Chater,	and	Tentori	(2013)	
have	provided	rather	simple	axiomatic	characterizations	of	the	most	prominent	special	cases	
of	this	one-parameter	subclass	of	C(r,s),	namely	R(h,e)	(for	r	=	–1)	and	OR(h,e)	(for	r	=	1).	Here	
again,	maybe	a	unified	formalism	may	allow	for	a	more	general	result	and	the	subsumption	of	
the	ones	already	available.		
Another	interesting	exercise	is	to	fix	r	instead,	and	let	s	vary,	as	in	the	following:	

𝐶(–=,N) ℎ, 𝑒 = 𝑙𝑛N 𝑃 ℎ 𝑒 − 𝑙𝑛N 𝑃 ℎ =
1
𝑠 𝑃 ℎ 𝑒 N − 𝑃(ℎ)N 	

This	is	represented	in	Figure	1	by	the	vertical	line	connecting	ID(h,e),	R(h,e),	and	D(h,e).	
Parameter	s	determines	the	specific	functional	form	by	which	the	posterior	and	prior	
probabilities,	P(h|e)	and	P(h),	are	related.	The	most	popular	cases	—	simple	algebraic	
difference	and	log	of	the	ratio	—	correspond	to	s	=	1	and	s	®	0	(in	the	limit),	respectively.		
Here,	one	interesting	connection	occurs	with	work	on	so-called	“Matthew	effects”	in	
probabilistic	confirmation	theory.	In	fact,	Festa	(2012)	and	Festa	and	Cevolani	(2016)	
discussed	the	Popperian	idea	that,	other	things	being	equal,	hypotheses	that	are	initially	less	
probable	should	get	a	confirmational	bonus	over	more	probable	ones,	to	the	extent	that	a	
lower	prior	probability	indicates	greater	content	and	“testability”	(also	see	Roche	2015,	and	
Sprenger	2016a).	Following	Kuipers	(2000,	p.	25),	this	may	be	called	an	anti-Matthew	effect	
(a	Matthew	effect	being	the	opposite,	i.e.,	a	confirmational	advantage	for	hypotheses	with	a	
higher	prior).	Festa	(2012)	noticed	that	Matthew	and	anti-Matthew	effects	characterize	D(h,e)	
and	ID(h,e),	respectively,	while	measure	R(h,e)	is	“Matthew-independent”	in	his	terminology.	
In	our	generalized	framework,	one	might	thus	explore	whether,	for	r	=	–1	(that	is,	for	C(–1,s)	as	
above),	s	=	0	represents	a	critical	threshold	to	establish	the	Matthew	behavior	of	a	measure,	at	
least	for	s	Î	[–1,1].	(If	so,	then	perhaps	the	absolute	value	of	s	may	serve	as	a	suitable	index	of	
how	strongly	the	corresponding	measure	exhibits	Matthew	vs.	anti-Matthew	effects,	
depending	on	whether	s	itself	is	positive	vs.	negative).		
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4.	A	straightforward	application	to	other	relevance	measures	

Following	a	terminological	suggestion	by	Schippers	and	Siebel	(2015,	p.	14),	we	can	label	
“counterfactual”	the	following	counterpart	variants	of	our	six	confirmation	measures,	where	
prior	values	P(h)	and	O(h)	are	replaced	by	P(h|¬e)	and	O(h|¬e),	respectively:	

𝐷∗ ℎ, 𝑒 = 𝑃 ℎ 𝑒 − 𝑃 ℎ|¬𝑒 	

𝑅∗ ℎ, 𝑒 = 𝑙𝑛
𝑃 ℎ 𝑒
𝑃 ℎ|¬𝑒 	

𝐺∗ ℎ, 𝑒 = 𝑙𝑛
𝑃(¬ℎ|¬𝑒)
𝑃 ¬ℎ|𝑒 	

𝑂𝐷∗ ℎ, 𝑒 = 𝑂 ℎ 𝑒 − 𝑂 ℎ|¬𝑒 	

𝐼𝐷∗ ℎ, 𝑒 = 𝑂(¬ℎ|¬𝑒) − 𝑂 ¬ℎ|𝑒 	

𝑂𝑅∗ ℎ, 𝑒 = 	𝑙𝑛
𝑂 ℎ 𝑒
𝑂 ℎ|¬𝑒 	

All	of	these	measures	are	null	for	probabilistically	independent	pairs	h,e,	and	positive	vs.	
negative	in	case	h	and	e	are	positively	vs.	negatively	associated.	However,	they	do	not	
generally	fulfil	the	condition	that	they	are	higher	/	equal	/	lower	for	h,e	as	compared	to	h,f	just	
depending	on	whether	P(h|e)	⋛	P(h|f)	(see	Crupi,	Tentori,	and	Gonzalez	2007,	and	
Climenhaga	2013).	So	they	still	are	measures	of	the	probabilistic	relevance	between	h	and	e,	
but	not	in	the	sense	of	incremental	confirmation.	Still,	most	of	them	are	indeed	found	at	
various	places	in	the	literature.	Hájek	and	Joyce	(2008,	p.	122),	for	instance,	mention	four	—	
D*(h,e),	R*(h,e),	OD*(h,e),	and	OR*(h,e)	—	as	candidate	measures	of	“probative	value”.	
Moreover,	three	of	these	play	an	important	role	in	contemporary	epidemiology.	For	let	h	be	a	
target	occurrence	of	interest	and	e	a	relevant	experimental	intervention	or	environmental	
exposure.	Then	D*(h,e)	just	is	the	standard	measure	of	the	absolute	change	in	risk	of	h	due	to	e	
and	R*(h,e)	an	isotone	transformation	of	the	relative	change	in	risk	(see,	for	example,	Barratt	
et	al.	2004).	OR*(h,e),	in	turn,	is	simply	the	log	of	what	is	generally	known	as	“the	odds	ratio”	
in	the	epidemiology	literature	(see	A’Court	et	al.	2012,	Cornfield	1951,	and	Milne	2012).	
Another	well-known	measure	of	association,	Yule’s	Q,	is	also	ordinally	equivalent	to	OR*(h,e)	
(Garson	2012;	Yule	1900).	Moreover,	according	to	Fitelson	and	Hitchcock’s	(2011)	survey,	
some	of	these	measures	have	been	employed	to	quantify	causal	strength	(with	h	now	
denoting	an	outcome	and	e	its	causal	antecedent):	Eells	(1991)	would	support	D*(h,e)	and	
Lewis	(1986)	R*(h,e),	while	both	Cheng’s	(1997)	and	Good’s	(1961,	1962)	preferred	measures	
are	ordinally	equivalent	to	G*(h,e).	Some	relevant	axiomatic	characterizations	can	be	found	in	
Sprenger	(2016b).	Finally,	Schupbach	and	Sprenger’s	(2011)	favorite	measure	of	explanatory	
power	is	ordinally	equivalent	to	R*(h,e)	(also	see	Crupi	and	Tentori	2012	and	Cohen	2015	for	
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discussion).	It	is	then	of	potential	interest	to	notice	that	we	can	embed	all	of	these	measures	
as	special	cases	of	the	following,	in	a	way	that	is	strictly	parallel	to	our	earlier	treatment	of	
incremental	confirmation:		

𝐶 3,N
∗ ℎ, 𝑒 = 𝑙𝑛N𝑙𝑛3 𝑂 ℎ 𝑒 + 1 − 𝑙𝑛N𝑙𝑛3 𝑂 ℎ|¬𝑒 + 1 	

To	have	a	summary	illustration,	one	simply	has	to	refer	back	to	Figure	1	and	replace	each	
specific	measure	by	its	counterfactual	variation,	e.g.,	with	D*(h,e)	instead	of	D(h,e).	
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