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Abstract

Inductive reasoning requires exploiting links between evidence and hypotheses. This can be
done focusing either on the posterior probability of the hypothesis when updated on the new evi-
dence or on the impact of the new evidence on the credibility of the hypothesis. But are these two
cognitive representations equally reliable? This study investigates this question by comparing
probability and impact judgments on the same experimental materials. The results indicate that
impact judgments are more consistent in time and more accurate than probability judgments.
Impact judgments also predict the direction of errors in probability judgments. These findings sug-
gest that human inductive reasoning relies more on estimating evidential impact than on posterior
probability.

Keywords: Inductive reasoning; Probabilistic reasoning; Inference; Impact; Confirmation
judgments; Confirmation measures

1. Introduction

1.1. Posterior probability and evidential impact

Humans’ spectacular ability to draw inferences from limited information underpins per-
ception, categorization, prediction, diagnostic reasoning, and scientific discovery. Such
inferences are inductive because they venture beyond the information given to draw conclu-
sions that are probable given the available evidence but are not logically implied by it.
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Any inductive inference concerns the relation between two elements: the hypothesis of
interest (h) and the available evidence (e). Different emphasis can be given to each of
these elements, focusing on one and leaving the other in the background. For example, in
the inductive argument:

“X is a male student” (e), therefore “X owns a videogame console” (h)

we can focus on hypothesis h and wonder how much we believe it in the light of evi-
dence e or we can consider evidence e and wonder how much impact it has on hypothesis
h. Within a Bayesian framework, these two questions map onto two distinct notions:

(a) the posterior probability, Pr(h|e), of a hypothesis as updated on the new evidence,
that is, the overall degree of belief in h given e;

(b) the impact (or degree of confirmation1), Imp(h,e), of new evidence on the credibility
of a hypothesis, that is, whether or not (and how much) e strengthen/weakens the
belief in h.

Although conceptually related, posterior probability and impact can be dissociated. For
example, hypotheses with a high prior probability (e.g., h: “Next July, it will rain at least
once in London”) retain their high probability even in the light of irrelevant evidence
(e.g., e: “the BBC has just launched a new cookery program”). In such a situation, Pr(h|e)
is high, whereas Imp(h,e) is nil. On the other hand, hypotheses with an extremely low
prior probability (e.g., h: “Nick will win the next national lottery”), might remain rather
improbable even in the light of a considerable body of evidence in their favor (e.g., e:
“Nick has just bought one tenth of the tickets of the next national lottery”). Posterior
probability and evidential impact are therefore distinct notions (see below for their formal
description), which are both needed to properly describe inductive arguments. Human rea-
soners have been shown to be able to distinguish between these two quantities (see, e.g.,
the results in Tentori, Crupi, Bonini, & Osherson, 2007; Tentori, Crupi, & Russo, 2013).
It is, then, interesting to see whether they are equally good at estimating them. Answering
this question is the primary goal of our study. In what follows, we will briefly review the
literature on judgments of posterior probability and evidential impact. We will then out-
line an experiment comparing accuracy and time-consistency of probability versus evi-
dential impact judgments. Finally, we will discuss the implications of the results obtained
and provide possible directions for future research.

1.2. The assessment of posterior probability

The experimental study of inductive reasoning has focused mainly on the probability
of hypotheses. In the psychological literature, investigations on this topic are often
grouped under the label probabilistic reasoning and have fostered a wide-ranging debate
on human rationality. Indeed, people’s intuitive probability judgments systematically
depart from normative benchmarks: the axioms of probability theory and their conse-
quences, such as Bayes’ theorem. With regard to belief revision in the light of new
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information, the documented errors include conservatism (Edwards, 1968), which is the
tendency to stick with prior probabilities, as well as base-rate neglect (Tversky &
Kahneman, 1982), which is, in a sense, the opposite tendency to underweight (or even
ignore) prior probabilities. These findings indicate that, as new evidence becomes avail-
able, people update their subjective probabilities about hypotheses in the right direction
but to an extent that significantly deviates from the amount prescribed by Bayes’ theo-
rem. Belief updating has also been shown to be affected by order effects (Hogarth & Ein-
horn, 1992), whereby judgments concerning the final probability of a hypothesis in the
light of multiple pieces of evidence are not independent from the order of presentation
of the evidence. Yet again, these judgments appear to be normatively defective in dif-
ferent directions: More importance can be given to earlier (primacy effect) or later
(recency effect) pieces of evidence in a sequence, depending on factors such as the
tasks’ characteristics or the complexity of the stimuli. Probability judgments have also
been reported to depart from elementary principles of class inclusion under specific cir-
cumstances (see section 1.4 and Tentori et al., 2013; for more on such circumstances).
Prominent examples are the conjunction fallacy (Tentori, Bonini, & Osherson, 2004;
Tversky & Kahneman, 1983), in which a conjunctive statement is assessed to be more
likely than one of its conjuncts, and the disjunction fallacy (Bar-Hillel & Neter, 1993),
in which a disjunctive statement is assessed to be less likely than one of its disjuncts.
These phenomena have proved rather robust (see, e.g., Bar-Hillel, 1980; Crupi &
Girotto, 2014; Gilovich, Griffin, & Kahneman, 2002; Tentori & Crupi, 2012b), reveal-
ing that explicit judgments of probability may indeed fall short of rational standards in
systematic ways.

A more optimistic picture of human probabilistic reasoning has recently emerged from
studies which tested various forms of Bayesian modeling of inference, ranging from cau-
sal learning and categorization, to prediction and argumentation (for overviews, see Cha-
ter, Oaksford, Hahn, & Heit, 2010; Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010). For example, Lucas and Griffiths (2010) showed that people’s judgments about
the functional form of different causal relationships are based on covariation data, cate-
gory information, and verbal cues, in a way that is consistent with a hierarchical Bayesian
model. Kemp and Tenenbaum (2009) modeled property induction in different (e.g., bio-
logical, spatial knowledge, etc.) contexts as a Bayesian inference. Griffiths and Tenen-
baum (2011) found that, when predicting the duration or extent of phenomena from their
current state, participants integrated prior knowledge and observed data in a way that is
more consistent with their Bayesian model than some simple heuristics. T!eglas et al.
(2011) showed that a Bayesian model accounts for observed patterns of expectation and
surprise in 12-month-old infants, assuming elementary and plausible abstract principles of
object motion. Finally, drawing from classical catalogues of putative logical fallacies,
Hahn and Oaksford (2007) provided theoretical and empirical evidence that Bayesian
probability can account for how arguments are employed and assessed in various every-
day settings.

Even if their actual meaning has been sometimes disputed (see, e.g., Chater et al.,
2011; Jones & Love, 2011), these results suggest that human probabilistic reasoning is,
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when dealing with real-world problems, surprisingly impressive. Indeed, they are also
consonant with the prevalence of Bayesian models of lower-level processes in perception
and motor control, language, and even brain function (e.g., Chater & Manning, 2006;
Doya, Ishii, Pouget, & Rao, 2007; Knill & Richards, 1996; K€ording & Wolpert, 2006).
We will consider one way in which to reduce the tension between the Bayesian viewpoint
and the systematic biases in probabilistic reasoning tasks mentioned above. Such an
attempt focuses on the kind of stimuli that participants have been presented with in these
different research traditions in probabilistic reasoning: scenarios in which probability and
impact values tend to co-vary versus scenarios in which probability and impact are typi-
cally dissociated.

1.3. The assessment of evidential impact

The assessment of evidential impact has received much less attention than posterior
probability. A notable exception is given by experiments on categorical induction (Heit,
2000; Medin, Coley, Storms, & Hayes, 2003), which have considered the perceived
impact from evidence to hypotheses involving familiar categories (e.g., “cats,” “mam-
mals,” etc.) and so-called blank predicates (e.g., “have an ulnar artery”). Overall, partici-
pants’ judgments seem to be aligned with popular principles of evidential impact,
primarily based on relationships between the categories involved (Osherson, Smith, Wil-
kie, L!opez, & Shafir, 1990; Sloman, 1993). For example, the diversity principle states
that hypotheses are better supported by varied than by uniform evidence. This principle
appropriately predicts participants’ judgments that “rabbits use norepinephrine as a neuro-
transmitter” (h) is better supported by the evidence that lions and giraffes use norepineph-
rine as a neurotransmitter (e1 and e2) than by the evidence that lions and tigers do (e1
and e3), because lions are usually considered less similar to giraffes than to tigers.
Although the diversity principle can be useful at the descriptive level (i.e., capturing a
general tendency in people’s judgments), Lo, Sides, Rozelle, and Osherson (2002) con-
vincingly argued that it does not have the normative status that psychologists often attri-
bute to it. In fact, there are many arguments in which the principle is inappropriate or is
over-ridden. For example, although it seems undeniable that housecats resemble tigers
more than they resemble fieldmice, it appears perfectly defensible to judge the conclusion
“all mammals often carry the parasite Floxum” (h) as better supported by the evidence
that housecats and tigers often carry the parasite Floxum (e1 and e2) than by the evidence
that housecats and fieldmice do (e1 and e3) on the grounds of a possible predator–prey
relation.

Lo et al. (2002) replaced the diversity principle with a rule based purely on probabili-
ties defined over hypotheses and evidence. Rules of this kind are known in the epistemol-
ogy literature as Bayesian confirmation measures and give numerical expression to the
impact of evidence e on hypothesis h as a function of some combination of probability
values defined over e and h. These models differ with regard to what specific probability
values have to be considered, and how they should be combined, but share the following
qualitative properties of impact (Carnap, 1962):
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Impðh; eÞ ¼
[ 0 iff PrðhjeÞ[PrðhÞ
¼ 0 iff PrðhjeÞ ¼ PrðhÞ
\ 0 iff PrðhjeÞ\PrðhÞ

8
<

:

This means that, for all these models, evidence e has a positive [negative] impact on
hypothesis h if and only if the posterior probability of the hypothesis h in the light of evi-
dence e is higher [lower] than the prior probability of h (for some examples of positive
vs. negative impact, see section 1.1).

There are several ways to quantify impact (for recent reviews, see Br€ossel, 2013; Cru-
pi, Tentori, & Gonzalez, 2007; Festa, 2012; Glass, 2013; Roche & Shogenji, 2014). We
decided to employ three different models (that will be presented in section 2.1.1, along
with the motivation for their selection from those available in the literature.). However,
in addition to the qualitative definition provided above, all Bayesian models of impact
share two important properties. First, they provide precise normative benchmarks against
which to evaluate the accuracy of impact judgments. Second, they can be used for any
kind of inductive arguments, and not only categorical ones. For these reasons, we decide
to use them in our study.

In spite of their popularity in epistemology, Bayesian models of impact are rarely stud-
ied in psychological research. When they are, however, participants consistently have
proved accurate in estimating evidential impact, both with categorical (Lo et al., 2002)
and non-categorical arguments concerning artificial material (e.g., urns and balls of differ-
ent colors, Tentori, Crupi, Bonini, et al., 2007) as well as with real-world predicates (e.g.,
“to be a male,” “to own a motorbike worth 10,000 Euros,” Mastropasqua, Crupi, & Ten-
tori, 2010). Accurate impact judgments were also obtained when the uncertainty of evi-
dence was manipulated, either explicitly (directly providing numerical information
concerning the probability of the evidence) or implicitly (employing ambiguous pictures
as evidence). Note that the latter tasks are particularly difficult because they require the
degree of uncertainty of the evidence to be integrated into the assessment of impact.
Impact judgments seemed to be particularly accurate when participants were most confi-
dent about the relevant probability distribution (e.g., in urns and balls scenarios where the
number of balls of each kind in each urn is explicitly given). Otherwise (e.g., in most
real-life scenarios in which the relevant probability values are less sharply defined),
impact judgments, although in the right direction, tended to be systematically more mod-
erate than they should be (Tentori, Crupi & Osherson, 2007, 2010).

1.4. Comparing the assessment of posterior probability and impact

The results of the studies cited in the previous paragraphs are not, of course, directly
comparable, given that they employed different participants, procedures, and stimuli.
They do raise, however, the possibility that people might be better at judging impact than
posterior probability. Data reported in Tentori, Crupi, Bonini, et al. (2007), and Crupi
et al. (2007) support this conjecture: In an urn setting, normative Bayesian confirmation
measures were better predictors of elicited impact judgments when degrees of impact were
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computed by the true statistical probabilities rather than those subjectively estimated by the
participants, the latter having been found to be prone to well-known biases (in particular,
conservative posteriors, see section 1.2. above). This result suggests that, psychologically,
impact may be more fundamental than probability. Finally, convergent evidence arises
also from the observation that impact affects the occurrence and prevalence of probabilis-
tic errors, as in the conjunction fallacy (see section 1.2) (Crupi, Fitelson, & Tentori,
2008; Tentori & Crupi, 2012a; Tentori et al., 2013). In particular, in Tentori et al.
(2013), participants were presented with three statements of the form h1, h1∧h2, and
h1∧h3. Hypotheses h2 and h3 were selected in such a way that h2 ranked higher than the
h3 in assessments of impact, but lower in judged probability. An example of such a sce-
nario is the following:

O. has a degree in violin performance. [e]

Which of the following hypotheses do you think is the most probable?
O. is an expert mountaineer [h1, correct option]
O. is an expert mountaineer and gives music lessons [h1∧h2, conjunction fallacy]
O. is an expert mountaineer and owns an umbrella [h1∧h3, conjunction fallacy]

Fallacious responses systematically targeted h1∧h2 more than h1∧h3, showing that the
impact of the evidence on the added conjunct (and not the probability of the added con-
junct in the light of the evidence) is the key determinant of the conjunction fallacy. This
result also reveals that the assessment of impact can be implicit and relevant even in
tasks in which only the probability of hypotheses should be at issue.

The purpose of this study is directly to compare the reliability of impact versus proba-
bility judgments, by testing their accuracy and consistency on the same stimuli. While
consistency over time might be a fairly uncontroversial notion, one might still wonder
what it means precisely for these two kinds of judgments to be or not to be accurate. This
point seems to require clarification before we proceed, because important differences exist
as to how the normative status of these models is usually advocated.2 Key theoretical
results are known to show that (given appropriate auxiliary assumptions) departures from
probability principles would imply sure monetary losses (see Osherson, 1995; Vineberg,
2011) or otherwise avoidable epistemic costs (see D’Agostino & Sinigaglia, 2010; Leit-
geb & Pettigrew, 2010a,b; Predd et al., 2009). Indeed, the fact that a variety of normative
arguments lead to the same set of probabilistic principles is a powerful motivation for the
uniqueness of probability as a measure of degree of belief. To the best of our knowledge,
no comparable result exists so far for evidential impact. Available arguments in support
of different impact measures as normatively compelling have been largely based on the
theoretical or intuitive appeal of specific formal properties. Importantly, our talk of
accurate judgments solely concerns agreement with the chosen benchmark models
(i.e., standard probability vs. impact measures, respectively; see section 2.1.1 below) in
the experimental setting, and not the normative debates mentioned above. A tentative
discussion of the wider cognitive role of probability versus impact judgments will be
postponed to the concluding section.
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Regarding our experimental comparison of assessments of impact and probability, we
aimed at a compelling test by using real-world arguments, namely a more demanding
setup for impact judgments as shown by previous findings (see section 1.3). If assess-
ments of impact are both more accurate and more consistent than corresponding probabil-
ity judgments even here, then the former rather than the latter is likely to be the very
basis for sound inductive reasoning.

2. The experimental study

2.1. Stimuli

2.1.1. Preliminary phase
In a preliminary phase, we asked a convenience sample of 200 undergraduates drawn

from various UCL departments (100 females and 100 males) to fill in a survey with a ser-
ies of personal questions, such as the following:

Do you have a driving license? Do you own (at least) one videogame console? Can
you ski? Do you support any football team? Do you like cigars? Do you like
shopping? Do you have freckles?

Response frequencies were used to derive objective probabilities (e.g., the probability
that a UCL student has a driving license given that s/he is female/male) and correspond-
ing impact values (e.g., the impact of the evidence that a UCL student is female/male on
the hypothesis that s/he has a driving license). Impact values were computed according to
the following measures:

ImpRðh; eÞ ¼
PrðhjeÞ $ PrðhÞ
PrðhjeÞ þ PrðhÞ (Keynes, 1921; Horwich, 1982);

ImpLðh; eÞ ¼
PrðejhÞ $ Prðej:hÞ
PrðejhÞ þ Prðej:hÞ

(Kemeny & Oppenheim, 1952; Good, 1984);

ImpZðh; eÞ ¼
PrðhjeÞ$PrðhÞ

Prð:hÞ iff PrðhjeÞ&PrðhÞ
PrðhjeÞ$PrðhÞ

PrðhÞ iff PrðhjeÞ\PrðhÞ

8
<

: ðCrupi et al., 2007Þ:

These models—based on the probability ratio (R), likelihood ratio (L), and relative
distance (Z), respectively—satisfy the qualitative definition of impact presented in sec-
tion 1.3, but they differ quantitatively and indeed ordinally. This means that R, L, and
Z always agree in classifying the impact of evidence e on hypothesis h as positive ver-
sus negative, but they can differ in the quantification of such impact. Since our study
aims quantitatively to compare probability and impact judgments, employing three
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distinct normative models of impact allows us to test the generalizability of our results.
We selected these specific three models among those available on the basis of the fol-
lowing appealing metric features, that are widely employed in the literature. All three
measures range over the bounded interval [$1,1], which turns out to be convenient for
an empirical study. ImpR also complies with so-called law of likelihood, stating that
evidence e has a stronger impact on h1 than on h2 if and only if e is more likely
under the former than under the latter hypothesis (see, e.g., Crupi, Chater, & Tentori,
2013; Milne, 1996). ImpL and ImpZ, on the other hand, satisfy other popular principles
such as the symmetry condition Imp(h,e) =$Imp(not-h,e) (see, e.g., Crupi et al., 2007;
Eells & Fitelson, 2002; and references therein). A distinctive feature of ImpL, advo-
cated by Good (1984), is that it is fully determined once that pair of likelihood values
P(e|h) and P(e|not-h) is given, regardless of the value of the prior, P(h). The specific
appeal of measure ImpZ lies, instead, in the generalization of the basic logical relations
of entailment and refutation, as shown in Crupi and Tentori (2013, 2014a,b). Finally,
note that, although Bayesian models of impact express impact as a function of some
combination of probability values (a property named formality in Tentori, Crupi, and
Osherson, 2007, 2010), this appears contingent upon historical circumstances (the
notion of probability was formalized much earlier than impact) and does not necessar-
ily imply that probability is the more psychologically fundamental notion. On the con-
trary, the results of the experimental tests presented in section 1.2 suggest that impact
judgments can be provided directly, without making the relevant probability values
explicit.

2.1.2. Constructing the experimental arguments
Once estimates of the objective probabilities and corresponding impact values were

computed, we generated 56 arguments by combining two complementary pieces of evi-
dence (“X is a male [female] student”) with 28 different hypotheses (e.g., “X has a driv-
ing license,” “X likes cigars,” etc.).

The decision to use only two pieces of evidence was motivated by the objective of
keeping the base rate of the evidence constant and equal to .5, in order to have a com-
plete mapping between probability and impact.3 Evidence about gender serves this end
appropriately, because e and not-e are naturally perceived as equally probable and both
can be expressed in the affirmative mode (e.g., “female” rather than “not male”). More-
over, gender is a simple attribute that participants can easily connect with the properties
appearing in the hypotheses of interest. Note also that evidence e (e.g., “X is a male”)
and not-e (“X is a female”) either are neutral with regard to a hypothesis h or have an
opposite (i.e., positive vs. negative) impact on it. Therefore, using both these pieces of
evidence guarantees an identical number of arguments with positive and negative
impact.

Although high [low] posterior probability and positive [negative] impact tend to be
positively correlated, they can be dissociated, as illustrated in section 1.1. To minimize
possible biases in the stimuli, we selected the 28 hypotheses to generate (together with
our two pieces of evidence) all possible combinations of high/low posterior probability
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and positive/negative impact. More specifically, we generated an identical number of
arguments with high (>.5) and low (<.5) posterior probability of the hypotheses. The 28
arguments with high posterior probability included 18 arguments with positive impact,
four arguments with neutral impact, and six arguments with negative impact, whereas the
28 arguments with low posterior probability included six arguments with positive impact,
four arguments with neutral impact, and 18 arguments with negative impact (for a sche-
matic overview, see Table 1; for the complete list of the arguments in each class, see
Appendix A). Note that, as all Bayesian models of impact agree on the qualitative defini-
tion of impact (see section 1.3), this classification does not depend on the specific model
adopted.

2.2. Participants

A new convenience sample of 35 UCL undergraduates drawn from various UCL
departments (Mage = 22.43 years; 21 females) was recruited for the experiment. Each stu-
dent received £10 for her/his participation.

2.3. Procedure

Participants came to the laboratory twice, with an interval of 7–10 days. The two ses-
sions were identical and, on both occasions, participants were presented with each of the
56 arguments selected and asked to judge:

• the probability of the hypothesis in the light of the evidence provided;

• the impact of the evidence provided on the credibility of the hypothesis.

To control for possible carry-over effects, the order of arguments as well as the order
of probability and impact questions were balanced across participants. We also wanted to
minimize possible effects of the response format. To this aim, for both probability and

Table 1
Classification of the 56 arguments employed, according to the (higher vs. lower than .5) probability of the
hypothesis and the (positive vs. neutral vs. negative) impact of the evidence

Imp(h, e)

>0 = 0 <0

Pr(h|e)

>.5 N = 18
aver. Pr(h|e) = .74

N = 4
aver. Pr(h|e) = .92

N = 6
aver. Pr(h|e) = .62

N = 28
aver. Pr(h|e) = .74

<.5 N = 6
aver. Pr(h|e) = .33

N = 4
aver. Pr(h|e) = .16

N = 18
aver. Pr(h|e) = .30

N = 28
aver. Pr(h|e) = .29

N = 24
aver. Pr(h|e) = .64

N = 8
aver. Pr(h|e) = .54

N = 24
aver. Pr(h|e) = .38

N = 56
aver. Pr(h|e) = .51

Notes. In each cell in the table, the upper value shows the number of arguments, N. Immediately below
the number of augments is the average objective probability of the hypotheses in that cell.
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impact judgments, we employed two different scales: a discrete 100-point scale (ranging
from 0 to 100 for probability judgments and from $50 to +50 for impact judgments) and
a continuous scale (ranging from “certainly true” to “certainly false” for probability judg-
ments and from “maximally weakens” to “maximally strengthens” for impact judgments).
So, while in the former case, participants provided a number, in the latter, they marked a
position on a line spaced evenly from left to right (for a detailed outline of the scales and
the questions used, see Appendix B). To avoid any confusion between the two scales, we
randomly assigned participants to two groups: 19 (group 1) were presented with a discrete
probability scale and a continuous impact scale, 16 (group 2) with a continuous probabil-
ity scale and a discrete impact scale.

2.4. Results

Let us denote by Pr_survey the probability values obtained from the survey reported
above, and with ImpR_survey, ImpL_survey, ImpZ_survey the impact values computed by plug-
ging the relevant survey probabilities into the three impact models discussed in the previ-
ous paragraph. Participants’ judgments in the two experimental sessions will be denoted
with Pr1_judged and Pr2_judged, for probability, and Imp1_ judged and Imp2_ judged, for
impact.

2.4.1. Time-consistency
As a general consistency measure, we correlated each participant’s 56 judgments in

the first session with her/his corresponding 56 judgments in the second session, that is,
Pr1_judged with Pr2_judged, and Imp1_judged with Imp2_judged. The average correlations
across all participants (N = 35) are r = .86 for probability and r = .91 for impact, and
crucially the difference between these correlations is significant by a paired t-test
(t(34) = $3.722, p < .01).4 For both probability and impact judgments, there are no dif-
ferences between the two (continuous vs. discrete scale) groups by an independent t-test
(t(33) = 0.842, n.s., for probability and t(33) = $0.765, n.s., for impact). Therefore,
although both judgments are rather consistent over time, impact judgments are signifi-
cantly more consistent than probability judgments, and this does not depend on the scale
used to collect the judgments.5

2.4.2. Accuracy
As a first test of accuracy, we correlated each participant’s 56 judgments in the first

session with the corresponding 56 values obtained from the survey. That is, we correlated
the Pr1_judged with Pr_survey, and similarly we correlated Imp1_judged with each of
ImpR_survey, ImpL_survey, and ImpZ_survey. The average correlations across all participants
(N = 35) are r = .59 for probability and r = .77, .82, .80 for impact, as quantified with
ImpR,L,Z, respectively. The difference in the correlations between impact and probability
is significant by a paired t-test (t(34) = 8.055, 11.144, 10.155, for ImpR,L,Z, respectively,
all p < .01). Therefore, impact judgments are more correlated than probability judgments
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with the corresponding values derived from the survey to estimate the objective probabili-
ties, regardless of the measure employed to quantify objective impact.

Correlations for impact judgments do not differ by an independent t-test
(t(33) = 0.717, 0.378, 0.635 for ImpR,L,Z, respectively, all n.s.) in the two (continuous vs.
discrete scale) groups. In contrast, probability judgments correlate more with the corre-
sponding objective values when expressed on a discrete rather than continuous scale
(r = .67 for group 1 vs. r = .49 for group 2) by an independent t-test (t(33) = 6.197,
p < .01). However, even if we focus exclusively on group 1, the average correlation for
probability judgments (r = .67) is still significantly lower than those for impact (r = .77,
.83, .80 as quantified with ImpR,L,Z, respectively) by a paired t-test (t(18) = $4.245,
$7.144, $6.204, for ImpR,L,Z, respectively, all p < .01). Therefore, impact judgments are
more correlated than probability judgments with the corresponding values obtained from
the survey, even if we selectively consider the group of participants whose probability
judgments are most correlated with the corresponding objective values.

We then analyzed the degree to which the judgments of the experimental participants’
agree with the values derived from our prior survey. To begin with, we computed, for each
participant, the average absolute error for both impact and probability judgments across all
56 arguments, that is, average |Pr1_survey $ Pr1_judged|, |ImpR_survey $ Imp1_ judged|,
|ImpL_survey $ Imp1_ judged|, and |ImpZ_survey $ Imp1_ judged|. The average absolute error (nor-
malized on a 100 point scale) across all participants (N = 35) is 20.08 for probability versus
13.12, 10.67, 10.97 for impact, as quantified with ImpR,L,Z, respectively. The difference in
error between probability and impact is significant by a paired t-test (t(34) = 9.733, 16.791,
17.135 for ImpR,L,Z, respectively, all p < .01). Therefore, the errors in probability judgments
are almost twice as large as those in impact judgments, regardless of the measure employed
to quantify impact.

As with the correlations, we compared the average error for the two (continuous vs.
discrete scale) groups of participants. The average absolute error (normalized on a 100
point scale) in probability judgments is 18.79 for group 1 and 21.62 for group 2, which
are significantly different by an independent t-test (t(33) = $2.778, p < .01), indicating
again, that, for this type of stimuli, probability judgments are more accurate when
expressed on a discrete scale. The average absolute errors (normalized on a 100 point
scale) in impact judgments are 11.67, 9.59, 9.85 in group 1 and 14.83, 11.95, 12.30 in
group 2, for impact, as quantified with ImpR,L,Z, respectively. Their difference is signifi-
cant by an independent t-test (t(33) = $2.345, $2.648, $2.785, for ImpR,L,Z, respectively,
all p < .05). This suggests that impact judgments are closer to the corresponding objec-
tive values when expressed on a continuous scale. Note, however, that even if we focus
exclusively on judgments provided on a discrete scale (i.e., probability judgments in
group 1 and impact judgments in group 2), the average error in probability judgments
(18.79) is still significantly larger than the average errors in impact judgments (14.83,
11.95, 12.30, for impact, as quantified with ImpR,L,Z, respectively) by an independent t-
test (t(33) = 3.050, 6.421, 6.123, for ImpR,L,Z, respectively, all p < .01. Therefore, the
average error is larger in probability than impact judgments, even if we selectively
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compare the groups of participants with the most accurate probability judgments and the
least accurate impact judgments.

Finally, one might wonder if errors in probability judgments depend on the correspond-
ing impact values. In particular, previous experiments on the conjunction fallacy (Tentori
& Crupi, 2012a; Tentori et al., 2013) suggest that people tend to overestimate [underesti-
mate] the probability of hypotheses which are confirmed [disconfirmed] by the available
evidence. The arguments employed in our study are not ideal for testing this possibility
because (much as in ordinary real-life) a positive correlation exists between impact and
probability (r = .53, .57, .67, for impact, as quantified with ImpR,L,Z, respectively), and
the average probability of the confirmed hypotheses is higher than that of disconfirmed
ones (.64 vs. .38, see Table 1). As a consequence, the probability estimates for the two
classes could be affected by ceiling and floor effects and cannot be directly compared. To
circumvent these difficulties, we quantified the degree of agreement between probability
errors and the direction of impact judgments. In particular, we considered, for each par-
ticipant, all the arguments (of the 56) whose impact s/he had judged as different from
zero. Then, we computed the absolute difference between the corresponding objective
and subjective probability, that is |Pr1_obj $ Pr1_subj|, and assigned it a positive sign
whenever the participant had judged the impact as positive [negative] and had overesti-
mated [underestimated] the objective probability, a negative sign otherwise. Finally, we
averaged all these differences taken with their sign. Such an index is positive if the par-
ticipant overestimated the probability of the confirmed hypotheses and underestimated the
probability of the disconfirmed hypotheses more than s/he overestimated the probability
of disconfirmed hypotheses or underestimated the probability of confirmed hypotheses.
Zero represents the situation in which the participant made no errors at all or the same
amount of error in line with versus against what is predicted by impact. For the great
majority (80%) of participants, the index was positive. The sample mean across all 35
participants is +6.1, which is statistically different from the assumed null value of 0
(one-sample t-test, t(34) = 6.087, p < .01). Thus, errors in probability judgments are
influenced by corresponding impact values in the predicted direction: When impact is
positive [negative], participants tended to overestimate [underestimate] the corresponding
posterior probability (by 6%, on average).

To summarize, impact judgments are significantly more time-consistent and more
accurate than probability judgments. Impact judgments also predict the direction of the
errors in probability judgments. These results do not depend on the specific measure
employed to quantify impact or on the specific scale used to collect the judgments.

3. Discussion

The results of this study corroborate, with a different procedure and new materials, a
previous result of ours (Tentori, Crupi, & Osherson, 2007, 2010): Although in the
Bayesian tradition impact is formally expressed as a function of probability, its cognitive
assessment seems to be a primitive type of judgment. In addition, the current study
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allows us to conclude that, under comparable experimental conditions, impact judgments
are more accurate and consistent than probability judgments also in a real-life setting,
whose statistical structure has to be subjectively estimated by the participants.

The greater time-consistency and accuracy of impact judgments has been found by
employing different kinds of arguments, which differ for the (high vs. low) probability of
the hypothesis and the (positive vs. negative) impact of the evidence, as well as two (con-
tinuous vs. discrete) scales to collect the judgments. The stability of these results across
the scale used is particularly striking, because our participants were likely to be some-
what familiar with (at least some) explicit probability questions but had almost certainly
never previously explicitly rated evidential impact.

Might our findings depend on the specific content of the arguments? Realistic material
as that employed in this study has been proven (see section 1.3) to be associated to less
accurate impact judgments. This is not necessarily the case for probability judgments,
which often proved more markedly suboptimal with abstract materials. It is therefore
plausible that the difference that we found in time-consistency and accuracy between
impact and probability judgments could be even stronger with abstract arguments. On the
other hand, gender stereotypes are usually well formed and might have helped our partici-
pants in guessing the direction of impact at least with reference to some hypotheses.
However, it is on quantitative (and not only qualitative) grounds that judgments of impact
proved to be more accurate and consistent than judgments of probability. More generally,
some stereotypes could themselves be generated and maintained by a prevalence of
impact over posterior probability. For example, stereotypes such as “males like cigars”
and “males do not like shopping” could arise even if actually a minority (38%, in our
sample) of males like cigars and the majority of them (61%, in our sample) like shopping
simply because even fewer [more] females like cigars [shopping].

There has been much prior discussion of the puzzling phenomenon that people seem
to reason effectively about a highly uncertain world, even though their explicit probabil-
ity judgments, especially in laboratory conditions, appear to be unstable and inconsistent
(e.g., Evans & Over, 1996; Oaksford & Chater, 2007). According to a standard line of
argument inspired by the pragmatics of communication, such a discrepancy might result
from participants’ misinterpretation of the stimuli and/or experimental task. Although
many techniques have been developed to control for these alleged sources of misinter-
pretation, typically the biases in probability judgments are not dissipated (for a review
concerning the conjunction fallacy, e.g., see Moro, 2009). Our results suggest a novel
approach to bridge the reality-laboratory gap. In dealing with everyday uncertainty, we
suggest, people appear rational because they rely more on detecting relations of impact
than on computing values of posterior probability. In most real-life circumstances, this
would not constitute a problem, because these two kinds of assessments often yield sim-
ilar results. That is, when evidence has a strong positive [negative] impact on a hypoth-
esis, then the probability of the latter in the light of the former is usually rather high
[low]. However, as said above, the two variables can be dissociated, as it occurs, for
example, in a typical conjunction fallacy scenario (see Tentori et al., 2013). When this
happens, we argue, people are particularly exposed to biased probability judgments,
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whose direction and magnitude depend on relevant impact relations. Note, also, that
such a view allows a possible way to reconcile the results of traditional versus more
recent studies of human probabilistic reasoning mentioned in section 1.2. In fact, the
experimental scenarios usually considered in the Bayesian modeling studies (in which
good performances are typically reported) try to simulate statistical inferences in real-
world settings and thus differ from the classical scenarios employed in the heuristics
and biases tradition in that there is not any strong dissociation between impact and
probability.

Why are people more sensitive to impact than posterior probability? The question
is far from trivial, because probability judgments are acknowledged to be essential in
various activities, such as the prediction of future events, decision between risky pros-
pects, categorization, etc. The usefulness of impact judgments has been much less
discussed in the literature. However, the assessment of impact is crucial for many
tasks and, in particular, those in which the value of information or the soundness of
arguments has to be considered. For example, in medical practice, impact judgments
may help establish the most useful clinical evidence to acquire to test diagnostic
hypotheses (e.g., Crupi & Tentori, 2014b; Klayman & Ha, 1987; Nelson, 2005). Con-
sidering impact relations assists hypothesis generation and, in general, learning.
Another important area in which impact judgments are presumably involved is
communication and persuasion. In fact, a shared assumption in linguistics and prag-
matics (see Frank & Goodman, 2012) is that speakers attempt to be informative and
convincing, while the listeners use inference to recover speakers’ intended referents.
Being skilled at identifying impact could be therefore crucial for winning arguments
and influencing others’ opinions.6

It is also interesting to notice that impact captures the relation between two variables,
whereas probability is an absolute judgment. Impact is therefore more suitable than prob-
ability to track more or less direct causal dependencies and, as a consequence, might
achieve a higher degree of stability in response to changing background knowledge.
Imagine asking yourself, for example, the probability that a person living in a certain
place (e.g., Italy, Sudan, etc.) has a tuberculosis infection (TBI) given that she is cough-
ing up blood. To provide a precise answer seems quite hard because, even if you are
aware that TBI can be rather common in patients who cough up blood, to quantify the
exact probability requires more information about the spread of TBI and alternative dis-
eases compatible with that symptom in the population under consideration. However,
when it comes to impact, things seem to be different. You know that, in most (if not all)
circumstances, to cough up blood is valuable (albeit inconclusive) supporting evidence
for the hypothesis of having TBI (in Italy as well as in Sudan, etc.). Therefore, even
without being expert on the specific population under consideration, you can conclude
that this piece of evidence has an appreciable positive impact on the hypothesis at issue.
Thus, it is possible that, although impact and causality judgments are distinct, they may
support each other: Detecting impact may be an effective way of discovering and model-
ing new causal relations, while the knowledge of causal dependencies may lead to reli-
able impact assessments. The study of the connections between assessment of impact and
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perception of causality could provide important insights, as has been apparent in formal
work relating measures of confirmation and causal strength (Fitelson & Hitchcock, 2011).
Note, finally, that stability may, indeed, be a criterion for choosing which measures of
impact are more causally relevant, computationally useful, and, perhaps, cognitively plau-
sible.

Future research should be able to deepen our understanding of why we are more able
to judge impact over probability exploring experimentally some of the issues outlined
above. This will, we hope, help shift discussion from often inconclusive debates concern-
ing the extent of human rationality, to the question of how our mind works when making
reliable inferences in an uncertain world.
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Notes

1. In the epistemological literature, evidential support is often referred to as confirma-
tion. However, here we prefer to call it impact, for a number of reasons. First, the
technical meaning of confirmation departs from that of natural language, in which
it often implies complete validation (thus, in normal usage, if we confirm that Bill
came to the party, this implies that he definitely came to the party). Second, confir-
mation only conveys the idea of positive support while, of course, impact can be
negative as well (disconfirmation). Third, in the psychological literature, the term
confirmation has gained a negative connotation because of so-called confirmation
bias (Nickerson, 1998).

2. We are grateful to an anonymous reviewer for raising this point.
3. According to ImpR, in particular, positive impact cannot be very high if Pr(e) is

itself very high.
4. All the results reported in this study have been replicated with non-parametric sta-

tistics (Wilcoxon signed-rank test for paired samples and Mann–Whitney U-test for
independent samples).

5. Nor it seems to be related to the dispersion of participants’ impact and probability
judgments.

6. We thank Nick Beckstead for this suggestion.
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