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The current state of inductive logic is puzzling. Survey presentations are recurrently
offered (see, e.g., [20, 30, 52], classic textbooks by leading scholars are reedited and
new ones are published (see [28, 59], respectively) and a very rich and extensive
handbook was entirely dedicated to the topic just a few years ago [23]. Among the
contributions to this very volume, however, one finds forceful arguments to the effect
that inductive logic is not needed and that the belief in its existence is itself a mis-
guided illusion ([50]; also see [51] for a consonant line of argument), while other
distinguished observers have eventually come to see at least the label as “slightly
antiquated” ([43], p. 291).

What seems not to have lost any of its currency is the problem which inductive
logic is meant to address. Inference from limited ascertained information to uncertain
hypotheses is ubiquitous in learning, prediction and discovery. The logical insight
that such kind of inference is fallible may well be a platitude after Hume, but its real-
life counterparts remain painfully prominent nonetheless – missed medical diagnoses
[66] or judicial errors [46] illustrate effectively. And the otherwise amazing success
of inference under uncertainty in scientific inquiry as well as in many everyday mat-
ters is still a live issue in the study of human knowledge, cognition and behavior [63].

Having sketched out this bewildering background, I will not try to tame it in
any way – I think it’d be unwise. Instead, I will settle on one specific way to pur-
sue inductive logic which, although popular and somehow traditional, is far from
uncontroversial. This view (i) crucially involves the analysis of how given premises
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or data affect the credibility of conclusions or hypotheses of interest and (ii) relies
on probability to represent rational degrees of credence. In short, I will assume
that investigating inductive logic essentially amounts to pursuing (some variant of)
Bayesian confirmation theory. To be sure, a good deal of current philosophical work
in related areas involves reasoned criticism of either point (i) (see, e.g., [1, 4]),
point (ii) (see, e.g., [61]), or both (see, e.g., [39, 45, 47]. Perhaps, by presenting
a coherent selection of recent achievements, this concise overview will persuade
some skeptic that inductive-logical research through confirmation theory stands as a
deserving endeavour. But that’s more in hope than in purpose – I’d be more than con-
tent with providing a clear target, be that for criticism, or rather for agreement and
development.

1 Basics

A probabilistic theory of inductive confirmation can be spelled out by the defini-
tion of a function CP ph, eq representing the degree of support that hypothesis h

receives from evidence e (relative to probability function P q. The machinery needed
is relatively standard. One can take some basic logical language U (finite, for
simplicity), the subset UC of its consistent formulae and the set P of all regular
probability functions defined over U. (This set up is known to be very convenient
but not entirely innocent. Festa [17] and Kuipers [42], 44 ff., discuss some lim-
iting cases that are left aside thereby.) Confirmation will thus be represented by
CP ph, eq : tUC ˆ UC ˆ P u Ñ � and will have relevant probability values as its
building blocks, according to the following fundamental postulate.

(F) Formality.
There exists a function g such that, for any h, e P UC and any P P P , CP ph, eq

“ grP ph ^ eq, P phq, P peqs.

The probability distribution over the algebra generated by h and e is entirely
determined by P ph ^ eq, P phq and P peq. Hence, pF q simply states that CP ph, eq

depends on that distribution, and nothing else. (The label for this assumption is taken
from Tentori et al. [64, 65], where formality is shown not to hold unrestrictedly
for the human mind.) In a probabilistic theory of inductive confirmation, the prin-
ciple below is also usually taken to hold by default (at least, I’m not aware of any
explicit contention). It states that, for any fixed hypothesis h, the final probability and
confirmation always move in the same direction in the light of data.

(P) Final probability.
For any h, e1, e2 P UC and any P P P, CP ph, e1q ¡ CP ph, e2q if and only if
P ph|e1q ¡ P ph|e2q.

Importantly, (P q is a comparative (ordinal) principle. In fact, the ordinal level of
analysis is a solid middleground between a purely qualitative and a thoroughly quan-
titative (metric) notion of confirmation. In particular, ordinal notions are sufficient to
move “upwards” to the qualitative level, according to the following definition:
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(QC) Qualitative confirmation (from ordinal relations).
For any h, e P UC and any P P P, e confirms / is neutral for / disconfirms h

if and only if CP ph, eq ¡ CP p�h, eq.

As we will see in a moment, for the qualitative notion of confirmation to get its
proper meaning, we only need to add the following (where “J” denotes a tautology):

(T) Tautological evidence.
For any h1, h2 P UC and any P P P , CP ph1, Jq “ CP ph2, Jq.

pT q implies that any hypothesis is equally “confirmed” by empty evidence, as it
were. For the present purposes, I suggest to call CP ph, eq a probabilistic relevance
measure of (inductive) confirmation if and only if, beyond the technical require-
ment pF q, it satisfies both pP q and pT q. The following simple result motivates this
terminology.

Theorem 1 Given definition (QC), pP q and pT q imply that, for any h, e P UC and
any P P P , e confirms / is neutral for / disconfirms h if and only if P ph|eq ¡ P phq.

Proof For any h, e P UC and any P P P:

P ph|eq ¡ P phq

if and only if P p­ hq ¡ P p�h|eq (probability calculus)
if and only if P ph|eq ¡ P ph|Jq and P p�h|Jq ¡ P p�h|eq (probability calculus)
if and only if CP ph, eq ¡ CP ph, Jq and CP p�h, Jq ¡ CP p�h, eq pP q

if and only if CP ph, eq ¡ CP ph, Jq “ CP p�h, Jq ¡ CP p�h, eq pT q

if and only if e confirms / is neutral for / disconfirms h. (QC)

Theorem 1, of course, clarifies the core idea of inductive confirmation as proba-
bilistic relevance, namely, that the credibility of a hypothesis can be changed in either
a positive (confirmation in a strict sense) or negative way (disconfirmation) by the
evidence concerned. As surprising as it may seem, I think it is fair to say that full
understanding of these very basic features of inductive confirmation as relevance has
been achieved only in relatively recent times. (To my mind, the foregoing is a partic-
ularly polished characterization drawing on insights to be found in [2, 3, 14, 17, 48].
Also see [7].)

2 A Fragment of Axiomatics

It is now well understood that the quantitative analysis of probabilistic confir-
mation (as well as of other cognate notions, see, e.g., [9]) can be characterized
axiomatically. Consider, in particular, the following principles (see [13] for relevant
references).
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(A1) Disjunction of alternative hypotheses.
For any h1, h2, e P UC and any P P P, if P ph1 ^ h2q “ 0, then CP ph1 _

h2, eq ¡ CP ph1, eq if and only if P ph2|eq ¡ P ph2q.
(A2) Law of likelihood.

For any h1, h2, e P UC and any P P P, CP ph1, eq ¡ CP ph2, eq if and only if
P pe|h1q ¡ P pe|h2q.

(A3) Modularity (for conditionally independent data).
For any h, e1, e2 P UC and any P P P, if P pe1| ˘ h ^ e2q “ P pe1| ˘ hq, then
CP ph, e1|e2q “ CP ph, e1q.

Interestingly, one can rely on these as characteristic axioms to neatly sort out the
notion of inductive confirmation into three classical and ordinally divergent families
of measures, as follows.

Theorem 2 [12, 13, 31]

Let CP ph, eq be a probabilistic relevance measure of confirmation. Then:

(i) (A1) holds if and only if CP ph, eq is a probability difference measure, that is,
if there exists a strictly increasing function f such that, for any h, e P UC and
any P P P, CP ph, eq “ f [DP ph, eq], where DP ph, eq “ P ph|eq – P phq;

(ii) (A2) holds if and only if CP ph, eq is a probability ratio measure, that is, if
there exists a strictly increasing function f such that, for any h, e P UC and
any P P P, CP ph, eq “ f [RP ph, eq], where RP ph, eq “ P ph|eq/P phq;

(iii) (A3) holds if and only if CP ph, eq is a likelihood ratio measure, that is, if there
exists a strictly increasing function f such that, for any h, e P UC and any P P

P, CP ph, eq “ f rLP ph, eq], where LP ph, eq “ P pe|hq{P pe|�hq.

As a matter of theoretical understanding, it seems to me that Theorem 2 represents
an interesting achievement in that it carves out the distinctive traits of the most pop-
ular Bayesian models of inductive confirmation at the ordinal level. (For useful lists
including somewhat less popular options and further discussion, one can see, e.g., [3,
18, 24, 27, 54, 56].)

The ordinal notion of confirmation is arguably of greater theoretical relevance
than its metrical counterpart, because ordinal divergences, unlike purely quantitative
differences, imply opposite comparative judgments for some evidence-hypothesis
pairs of significant philosophical interest (see [19] for a now classical discussion). A
refinement from the ordinal to a properly metrical level can still be of value, how-
ever, and surely much convenient for tractability and applications. A quantitative
requirement that is sometimes put forward is the following form of additivity (see
[26, 48]):

(SA) Strict additivity.
For any h, e1, e2 P UC and any P P P, CP ph, e1 ^ e2q “ CP ph, e1q `

CP ph, e2|e1q.

If a strictly additive behavior is imposed, one functional form is singled out for the
quantitative representation of confirmation corresponding to each of the clauses of
Theorem 2 above, that is:
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(i) DP ph, eq “ P ph|eq – P phq;

(ii) RP ph, eq “ log
”

P ph|eq

P phq

ı

;

(iii) LP ph, eq “ log
”

P pe|hq

P pe|�hq

ı

.

(The bases of the logarithms are of course assumed to be greater than 1.)
Recently, arguments have been offered by Huber [37] and Milne [48] in favor of

D, and by Glass and McCartney [25] and Park [53] in favor of L. As for R, it can be
seen as conveying key tenets of the so-called “likelihoodist” position about evidential
reasoning, as suggested by Fitelson [22] (see [55] for a classical statement of like-
lihoodism, and [6, 60] for consonant arguments and inclinations). Some have seen
different measures as possibly capturing “distinct, complementary notions of eviden-
tial support” (Hájek and Joyce [29], p. 123, describing Joyce’s [38] position; also see
Schlosshauer and Wheeler [57] and Steel [62] for tempered forms of pluralism), but
this same plurality has prompted other scholars to be skeptical or dismissive of the
prospects for a quantitative theory of confirmation. According to Howson [35], for
instance, “there are few transparently essential properties that degree of confirmation
should have” (p. 184; also see Kyburg and Teng [44], 98 ff.). Less so, I would like to
submit, if one takes the connection between confirmation theory and inductive logic
seriously enough. This will be the focus of the following section.

3 What Does it Take to Generalize Deductive Logic?

It is a long-standing idea, going back to Carnap at least, that confirmation theory
should be analogous to classical deductive logic in some substantial sense, thus pro-
viding a theory of partial entailment and partial refutation. This is of course a most
credible project precisely if one is willing to align or even identify the very ideas of
confirmation theory and inductive logic. Hawthorne [30] seems sympathetic with this
aspiration, but pessimistic in diagnosis, pointing out that “an inductive logic must, it
seems, deviate from this paradigm” (see the discussion in Crupi and Tentori [10]).
Let us have a closer look.

Presumably, it was this deductive / inductive analogy that inspired Hempel’s [33]
early proposal of his “entailment condition” as a requirement for confirmation theory.

(EC) Entailment condition (qualitative).
For any h, e P UC with h contingent and any P P P , if e |ù h then e

confirms h

As is well known, Hempel’s qualitative theory of confirmation fulfils (EC) and
thus embeds logical entailment as a special case in a straightforward way (see [7]).
Within a quantitative theory of confirmation, we can aim at something more, such as
the following:

(EC*) Entailment condition (ordinal extension).
For any h, e1, e2, e3 P UC with h contingent and any P P P if e1 |ù h,
e2 |ù h and e3 * h, then CP ph, e1q “ CP ph, e2q ą CP ph, e3q.
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According to (EC*), not only is classical entailment retained as a case of confirma-
tion, it also represents a limiting case: it is the strongest possible form of confirmation
that a fixed hypothesis h can receive. Happily enough, all confirmation measures
above – D, R, and L – do imply (EC*) (see [14], p. 79). So far so good.

Hempel also took the following as obviously true (indeed, by definition; see [34],
p. 127):

(CC) Confirmation complementarity (qualitative).
For any h, e P UC and any P P P, e confirms h if and only if e disconfirms
�h

Here, confirmation and disconfirmation are meant to be interdefinable via nega-
tion, just like logical entailment and refutation. What about the ordinal extension of
this?

(CC*) Confirmation complementarity (ordinal extension).
CP p�h, eq is a strictly decreasing function of CP ph, eq, that is, for any
h1, h2, e1, e2 P UC and any P P P, CP ph1, e1q ¡ CP ph2, e2q if and only if
CP p�h1, e1q ĳ CP p�h2, e2q.

(CC*) neatly reflects Keynes’ remark that “an argument is always as near to prov-
ing or disproving a proposition, as it is to disproving or proving its contradictory”
([41], p. 80). Indeed, a long list of scholars have endorsed (CC*), including Carnap
([5], § 67), Kemeny and Oppenheim ([40], p. 309), and Eells and Fitelson ([16], p.
134). Measures D and L instantiate (CC*) in the most simple and elegant way, that
is, Cph, eq “ ´Cp�h, eq. Yet R fails this condition ([14], p. 86), a fact described
as no less than “damning” by Milne [48]. Apparently, R is thus ruled out as a sound
confirmation-theoretic generalization of deductive logic.

As pointed out by Fitelson ([21], p. 502), the Carnapian approach to inductive
logic was also driven by the following principle, similar to (EC*) above, but more
stringent:

pLq Logicality.
For any h1, h2, h3, e1, e2, e3 P UC with h1, h2 and h3 contingent and any P P

P:

(i) if e1 |ù h1, e2 |ù h2 and e3 * h3, then CP ph1, e1q “ CP ph2, e2q ą

CP ph3, e3q;
(ii) if e1 |ù �h1, e2 |ù �h2 and e3*�h3, then CP ph1, e1q “ CP ph2, e2q ă

CP ph3, e3q.

According to the logicality condition, entailment (refutation) is the one strongest
possible form of confirmation (disconfirmation) even across distinct hypotheses. As
Fitelson ([21], p. 506) observes, logicality singles out L, being violated by D (as well
as by Rq.

End of the story? Well, there’s one more little coup de théâtre, with which I
would like to conclude this detour and wrap up some implications from this as well
as the previous section. The deductive-logical notions of entailment and refutation
(contradiction) also exhibit the following well-known properties:
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Contraposition of entailment. Entailment is contrapositive, but not commutative.
That is, it holds that e entails h (e |ù hq if and only if �h entails �e p�h |ù �eq,
while it does not hold that e entails h if and only if h entails e ph |ù eq.

Commutativity of refutation. Refutation, on the contrary, is commutative, but not
contrapositive. That is, it holds that e refutes h pe |ù �hq if and only if h refutes
e ph |ù �eq, while it does not hold that e refutes h if and only if �h refutes
�e p�h |ù ��eq.

The confirmation-theoretic counterparts would seem pretty straightforward:

(A4) Contraposition of confirmation.
For any h, e P UC and any P P P, if e confirms h, then CP ph, eq “

CP p�e, �hq.
(A5) Commutativity of disconfirmation.

For any h, e P UC and any P P P, if e disconfirms h, then CP ph, eq “

CP pe, hq.

There is only one way, it turns out, to embed (A4) and (A5) within a probabilistic
approach to confirmation, as is shown by the following result:

Theorem 3 [10]

Let CP ph, eq be a probabilistic relevance measure of confirmation. Then (A4)
and (A5) hold if and only if CP ph, eq is a relative distance measure, that is, if there
exists a strictly increasing function f such that, for any h, e P UC and any P P P,
CP ph, eq “ f rZP ph, eqs, where:

ZP ph, eq “

$

&

%

P ph|eq´P phq

1´P phq
if P ph|eq ě P phq

P ph|eq´P phq

P phq
if P ph|eq ă P phq

What is most intriguing is that with a relative distance measure like Z one gets all
the rest for free, namely, (EC*), (CC*), and (Lq all follow. (And more besides: see
[8, 11, 15]; also see [10], where the relative distance label, originally due to [36], is
explained.)

Relative distance measures had independent historical background in early
research in automated expert reasoning [32, 58], and got their share of criticism as
an explication of evidential support (see [3, 25, 49]). What we’re left with here, any-
way, and my final suggestion, is simply as follows. Suppose that one sees inductive
logic as best addressed within some probabilistic theory of confirmation and takes it
seriously that inductive logic should generalize deductive-logical relationships. Then
a significant set of compelling constraints arise, contrary to concerns that are some-
times raised (e.g., [35]). Moreover, and contrary to worries of opposite sign (e.g.,
[30]), such constraints can all be satisfied.
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