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The most prominent research program in inductive logic – here just labeled The Program,
for simplicity – relies on probability theory as its main building block and aims at a proper
generalization of deductive-logical relations by a theory of partial entailment. We prove
a representation theorem by which a class of ordinally equivalent measures of inductive
support or confirmation is singled out as providing a uniquely coherent way to work out
these two major sources of inspiration of The Program.

 2013 Elsevier B.V. All rights reserved.

The current state of inductive logic may appear puzzling. Some highly sophisticated observers in philosophy, for instance,
have come to see the very term as “slightly antiquated” (see [32, p. 291]). Yet the central issue of inductive logic – i.e., the
evaluation of how given premises or data affect the credibility of conclusions or hypotheses of interest – never ceased to
play a significant role in a wide range of research domains. Up to recent times, striking examples arise from fields such as
cognitive psychology, computer science and the law (by way of illustration, see [19], [2], and [1], respectively). Thus, the
problem of inductive logic seems not to have lost its relevance, which provides motivation to stick to the label after all,
whatever its fate in certain philosophical quarters.

Survey presentations usually agree on one account, i.e., that much contemporary work in inductive logic has consistently
relied on two pillars. First, probability (in its modern mathematical meaning) is viewed as the main “building block” for
inductive-logical theorizing. And second, inductive logic is meant to provide an analogue of classical deductive logic in some
suitable sense (see [12] and [21]). For the sake of convenience, we will simply use The Program to denote the combination
of these two guidelines in inductive logic research.

In this contribution, we do not mean to defend The Program as such. We will rather enrich it through a novel formal
result, i.e., a representation theorem by which a class of ordinally equivalent measures of inductive support or confirmation
is singled out as capturing a small number of axioms. These axioms, we will argue, provide an unusually neat instantiation
of the spirit of The Program itself.

1. Induction and probability

Broadly speaking, the case for the probabilistic side of The Program is pretty straightforward and runs more or less as fol-
lows. It is a platitude that induction arises in the presence of uncertainty, and probability is widely recognized as the formal
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representation of uncertainty that is best understood and motivated. (For an updated survey of the main alternative options
available, though, see [28].) In order to exploit this point in more detail, we will now need a few technical preliminaries.

Let L be a propositional language. To ensure mathematical definiteness we will focus on the set Lc of the contingent
formulas in L (i.e., those expressing neither logical truths nor logical falsehoods) and on the set P of all regular probability
functions that can be defined over L, so that for any α ∈ Lc and P ∈ P, 0 < P (α) < 1. Each element P ∈ P can now be seen
as representing a possible (non-dogmatic, see [26, p. 70]) state of belief concerning a domain described in L. We will posit
a function C : {Lc × Lc × P} → % as representing the fundamental inductive-logical relation of support or confirmation and
adopt the notation C P (h, e), with e,h ∈ Lc denoting the premise (or the conjunction of a collection of premises) and the
conclusion of an inductive argument, respectively.1 Our first axiom will then be as follows:

A0 (Formality). There exists a function g such that, for any e,h ∈ Lc and P ∈ P, C P (h, e) = g[P (h ∧ e), P (h), P (e)].

Note that the probability distribution over the algebra generated by e and h is entirely determined by P (h ∧ e), P (h) and
P (e). Hence A0 simply states that C P (h, e) depends on that distribution, and nothing else. This is a widespread (although
often tacit) assumption in discussions of induction in a probabilistic framework. From Keynes and Carnap onwards, theorists
pursuing The Program are bound to subscribe to A0 more or less as a matter of course. When prompted by technical
reasons, moreover, inductive logicians working under the heading of Bayesian confirmation theory (or other related labels)
have expressed explicit endorsement of it.2

Now consider the following:

A1 (Final probability incrementality). For any e1, e2,h ∈ Lc and any P ∈ P, C P (h, e1)! C P (h, e2) iff P (h|e1) ! P (h|e2).

A1 states that, for any conclusion h, inductive support is an increasing function of the posterior probability conditional on
the premise (or conjunction of premises) e at issue. To the best of our knowledge, this also counts as virtually unchallenged
an assumption in probabilistic analyses of inductive inference.3 Notably, it already conveys a minimal form of alignment
between inductive and deductive logic. For, if violations of A1 are allowed, then one might have cases in which e1 " h while
e2 ! h, so that P (h|e1) = 1 > P (h|e2), and yet C P (h, e1) < C P (h, e2) (see [52, p. 109] for an example). We will now have to
tackle this point in a more thorough and general fashion.

2. Partial entailment – taken seriously

What we have called The Program of inductive logic research has been pursued in a number of variants, mostly de-
pending, as James Hawthorne has observed, on “precisely how the deductive model is emulated” [21]. Our current proposal
amounts to downright revival of an old and illustrious idea. According to this view, inductive logic should parallel the de-
ductive model by providing a generalized, quantitative theory of partial entailment.4 The following revealing passage, again
from [21], attests to the enduring influence of this notion, albeit in a pessimistic vein:

A collection of premise sentences logically entails a conclusion sentence just when the negation of the conclusion is
logically inconsistent with those premises. An inductive logic must, it seems, deviate from this paradigm [. . .]. Although
the notion of inductive support is analogous to the deductive notion of logical entailment, and is arguably an extension of it,
there seems to be no inductive logic extension of the notion of logical inconsistency – at least none that is interdefinable
with inductive support in the way that logical inconsistency is interdefinable with logical entailment. (All italics in the
original.)

A central goal of our discussion here is to show that this resignation is hasty. It is perfectly possible, we urge, to have a
sound inductive-logical extension of the notion of logical inconsistency that is indeed interdefinable with inductive support
in essentially the same way that logical inconsistency is interdefinable with logical entailment. So much so, we submit, that
one can safely and fruitfully embed into axioms those very properties that inductive logic would inevitably lack according
to Hawthorne.

First, we will assume the inductive-logical measure C P (h, e) to exhibit a commutative behavior whenever e and h are
inductively at odds (i.e., negatively correlated), thus paralleling the symmetric nature of logical inconsistency, as follows:

A2 (Partial inconsistency). For any e,h ∈ Lc and any P ∈ P, if P (h ∧ e)# P (h)P (e), then C P (h, e) = C P (e,h).

1 To allow for relevant background knowledge and assumptions, a further term B should be included, thus having C P (h, e|B). Such a term will be omitted
from our notation for simple reasons of convenience, as it is inconsequential for our discussion.

2 See [15, p. 322], [16, pp. 127–128], and [36, p. 21]. The label formality is taken from [53,54].
3 Relevant occurrences of A1 or closely related principles include the following: [5, pp. 77–80], [8, p. 670], [10, p. 58], [13, p. 506], [17, p. 295], [20,

p. 122], [22], [25, p. 53], [50, pp. 219–221], and [51, p. 60].
4 The idea of partial entailment can be shown to reach back to [31] and [3]. For the label, however, [44] is a key reference.
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An unrestricted form of commutativity has appeared as a basic and sound requirement in probabilistic analyses of de-
grees of “coherence” (and lack thereof).5 In A2, however, commutativity is not meant to extend to the quantification of
positive confirmation or support, because logical entailment (unlike refutation) is not symmetric, nor is it coextensive with
logical equivalence (or mere logical consistency, for that matter) in the way that refutation is coextensive with inconsistency
(Eells and Fitelson [9] and Crupi et al. [7] discuss this point further).

As for the interdefinability of logical entailment of h from e and inconsistency of e with ¬h, it naturally generalizes to
an inverse (ordinal) correlation between positive inductive support and partial inconsistency with regard to complementary
conclusions, as follows:

A3 (Complementarity). For any e,h1,h2 ∈ Lc and any P ∈ P, C P (h1, e)! C P (h2, e) iff C P (¬h1, e)$ C P (¬h2, e).

A3 can be seen as a fairly faithful formal rendition of Keynes’s remark that “an argument is always as near to proving or
disproving a proposition, as it is to disproving or proving its contradictory” [31, p. 80]. Indeed, A3 has been put forward by
several theorists, including other leading figures such as Carnap, sometimes in the stronger form of some specific functional
dependency between C P (h, e) and C P (¬h, e), like C P (h, e) = −C P (¬h, e) (see [3, §67]; also see [7, pp. 238–239], [9, p. 134],
and [30, p. 309]). Here, however, we prefer to stick to the ordinal/comparative level as a firmer basis for an axiomatic
approach.

To sum up, A2 implies that, when e and h are at odds, the central inductive-logical function C P in fact amounts to a
measure of their partial inconsistency. A3, on the other hand, implies that the positive inductive support from e to h is in
fact nothing other than a strictly decreasing function of the degree of partial inconsistency between e and ¬h. Hawthorne’s
[21] “impossibility” claim above would suggest that no sensible inductive-logical theory could satisfy such requirements, no
matter how appealing they may seem from within The Program. By stating them as axioms, we are intentionally turning
this line of argument upside down. Let us see what follows.

3. A representation theorem

The following can be proved (see Appendix A):

Theorem. A0–A3 if and only if there exists a strictly increasing function f such that C P (h, e) = f [z(h, e)], where

z(h, e) =






P (h|e)−P (h)
1−P (h) if P (h|e)% P (h),

P (h|e)−P (h)
P (h) if P (h|e) < P (h).

z(h, e) itself is a particularly appealing exemplar of the class of (ordinal) equivalence singled out by the theorem, espe-
cially for its neatly symmetrical and bounded range [−1,+1]. Also, despite its twofold algebraic form, it conveys a unifying
core intuition.6

To appreciate this conceptual unity, note that in case of positive inductive support or confirmation z(h, e) expresses the
relative reduction of the initial distance from certainty of h being true as yielded by e, i.e., it measures how far upward the
posterior P (h|e) has gone in covering the distance between the prior P (h) and 1. Similarly, in the case of negative inductive
support or disconfirmation, z(h, e) reflects the relative reduction of the initial distance from certainty of h being false as
yielded by e, i.e., it measures how far downward the posterior P (h|e) has gone in covering the distance between the prior
P (h) and 0. Accordingly, z(h, e) measures the extent to which the initial probability distance from certainty concerning
the truth (falsehood) of h is reduced by the confirming (disconfirming) statement e. Or, put otherwise, how much of such
distance is “covered” by the upward (downward) jump from P (h) to P (h|e). Thus, z(h, e) is a measure of the relative
reduction of the distance from certainty that a conclusion/hypothesis of interest is true or false – or, with a slight abuse of
language, a relative distance measure. (See [5], for a more extensive discussion. The “relative distance” label was first adopted
by Huber [27], while reporting on [7].)

Interestingly, z(h, e) is not an entirely new idea. Sparse occurrences can be found in rather diverse settings, such as the
formal analysis of certainty factors, a central notion to represent uncertain reasoning in early expert systems (see [48] and
[23]). Apart from [7], the only further appearance in the philosophical literature seems to be in [42, pp. 86–87] (where a

5 See Shogenji’s [47] seminal work. For an updated and informed discussion of subsequent developments, see [46]. For a neat investigation on a non-
probabilistic extension of logical inconsistency, see [4].

6 An alternative, more compact rendition is the following:

z(h, e) = min[P (h|e), P (h)]
P (h)

− min[P (¬h|e), P (¬h)]
P (¬h)

.

In this form, z(h, e) is structurally similar to Mura’s [37,38] measure of “partial entailment”. Mura’s measure and z(h, e), however, are demonstrably non-
equivalent in ordinal terms.
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different measure is eventually endorsed, though). It should also be mentioned, however, that the positive branch of z(h, e)
is ordinally equivalent to a confirmation measure proposed by Gaifman [14, p. 120], is identical to a measure of inductive
strength mentioned by Rips [43, p. 129, fn. 1], and has been given further attention recently by Schlosshauer and Wheeler
[45], and Wheeler and Scheines [56,57].

To the extent that relative distance measures – i.e., measures that are ordinally equivalent to z(h, e) – represent a coher-
ent probabilistic generalization of deductive-logical relationships, one might well expect to find other suitable connections.
Contraposition offers an effective illustration. The deductive-logical principle of contraposition says that e implies h if and
only if ¬h implies ¬e. A straightforward inductive-logical extension would state that C P (h, e) = C P (¬e,¬h), provided that
positive inductive support or confirmation is at issue. The latter caveat is important, for contraposition does not apply to
refutation, i.e., it is not the case that e (deductively) refutes h if and only if ¬h refutes ¬e. (Example: we have a disproving
argument from “the card randomly drawn is a 7” to “the card drawn is a picture”; not so from “the card drawn is not a
picture” to “the card drawn is not a 7”.) Indeed, relative distance measures do imply the relevant principle, i.e., the following
(see [7]):

A4 (Inductive-logical contraposition). For any e,h ∈ Lc and any P ∈ P, if P (h ∧ e)% P (h)P (e), then C P (h, e) = C P (¬e,¬h).

One can even prove that, if A3 is assumed, then A2 and A4 are logically equivalent. Interestingly, this also means that
they are entirely interchangeable in the statement of our representation theorem.

4. Discussion

Let us go back to Hawthorne’s [21] quote above. In his treatment, a pessimistic conclusion arises from one specific
version of The Program, i.e., the popular idea of probability per se as the core inductive-logical notion.7 For, if one posits
C P (h, e) = f [P (h|e)] (with f a strictly increasing function), then A0–A1 are satisfied, while Hawthorne’s “deviations” from
the deductive-logical paradigm concurrently emerge. The strongest conclusion that inductive logic “must” exhibit such de-
viations fails, however. One feature that allows relative distance measures to do the trick (with further consequences along
the very same line, see A4) is that they represent inductive support in terms of impact via probabilistic relevance, not over-
all credibility via probability as such. On this account, our analysis has tacitly followed John Irving Good’s remark that “if
you had P (h|e) close to unity, but less than P (h), you ought not to say that h was confirmed by e” [16, p. 134]. Interest-
ingly, this clear-cut distinction between posterior probability and inductive support or confirmation has proved recurrently
necessary for theoretical clarity in philosophy as well as in artificial intelligence and the psychology of reasoning (see
[6,24,40,41,55]).

Measures of confirmation qua probabilistic relevance are well known to be many and diverse, and have been said to
“capture distinct, complementary notions of evidential support” [20, p. 123]. Whatever the amount of pluralism that one is
willing to allow for in this respect, our result shows that a small set of properties singles out relative distance measures
as uniquely capturing the notion of partial entailment. Some very influential alternatives (like the probability difference
and likelihood ratio measures) do themselves satisfy A0–A1, but face the same limitations emerging from Hawthorne’s
remarks. On the other hand, there does exist a confirmation measure devised and analyzed by Carnap [3, §67] – i.e.,
P (h ∧ e) − P (h)P (e) – which overcomes the latter limitations in that it satisfies A2 and A3. Yet it demonstrably violates the
pivotal principle A1 (see [11] for a proof).

To conclude, what we have called The Program of inductive logic research has elicited varying degrees of confidence,
effort and determination. While it has found a good deal of criticism, it seems to have remained prominent nonetheless,
and stands as a deserving theoretical endeavor at least in our view.8 Be that as it may, we point out that relative distance
measures represent a uniquely coherent way to combine the reliance on a probabilistic analysis along with the aim at
a proper generalization of deductive-logical relations by a theory of partial entailment. These being the main sources of
inspiration of The Program itself, such a result could meet the interest of its advocates and critics alike.
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Appendix A

Theorem. A0–A3 if and only if there exists a strictly increasing function f such that C P (h, e) = f [z(h, e)], where

z(h, e) =






P (h|e)−P (h)
1−P (h) if P (h|e)% P (h),

P (h|e)−P (h)
P (e) if P (h|e) < P (h).

Proof. Right-to-left implication

A0. If there exists a strictly increasing function f such that C P (h, e) = f [z(h, e)], then A0 is trivially satisfied.
A1. Let e1, e2,h ∈ Lc be given. Three classes of cases can obtain. (i) Let P ∈ P be such that P (h|e1)! P (h)! P (h|e2). It is

easy to verify that, for any e,h ∈ Lc , P (h|e) ! P (h) iff z(h, e) ! 0. So we have that, for any e1, e2,h ∈ Lc , P (h|e1) ! P (h) iff
z(h, e1) ! 0 and P (h|e2) $ P (h) iff z(h, e2) $ 0. It follows that, for any e1, e2,h ∈ Lc , P (h|e1) ! P (h|e2) iff z(h, e1) ! z(h, e2).
(ii) Let P ∈ P be such that P (h|e1), P (h|e2)% P (h). Then we have that, for any e1, e2,h ∈ Lc , P (h|e1) ! P (h|e2) iff P (¬h|e1)$
P (¬h|e2) iff P (¬h|e1)/P (¬h) $ P (¬h|e2)/P (¬h) iff 1 − P (¬h|e1)/P (¬h) ! 1 − P (¬h|e2)/P (¬h) iff z(h, e1) ! z(h, e2). (iii)
Finally, let P ∈ P be such that P (h|e1), P (h|e2) # P (h). Then we have that, for any e1, e2,h ∈ Lc , P (h|e1) ! P (h|e2) iff
P (h|e1)/P (h) ! P (h|e2)/P (h) iff P (h|e1)/P (h) − 1 ! P (h|e2)/P (h) − 1 iff z(h, e1) ! z(h, e2). As (i)–(iii) are exhaustive, for
any e1, e2,h ∈ Lc and any P ∈ P, P (h|e1) ! P (h|e2) iff z(h, e1) ! z(h, e2). By ordinal equivalence, if there exists a strictly
increasing function f such that C P (h, e) = f [z(h, e)], then A1 follows.

A2. Let e,h ∈ Lc and P ∈ P be given so that P (h ∧ e) # P (h)P (e). This is equivalent both to P (h|e) # P (h) and to
P (e|h) # P (e). Then we have that, for any e,h ∈ Lc , P (h|e)/P (h) = P (e|h)/P (e) iff P (h|e)/P (h) − 1 = P (e|h)/P (e) − 1 iff
z(h, e) = z(e,h). So for any e,h ∈ Lc and any P ∈ P, if P (h ∧ e) # P (h)P (e), then z(h, e) = z(e,h). By ordinal equivalence, if
there exists a strictly increasing function f such that C P (h, e) = f [z(h, e)], then A2 follows.

A3. Let e,h1,h2 ∈ Lc and P ∈ P be given. Three classes of cases can obtain. (i) Let P ∈ P be such that P (h1|e)! P (h1) and
P (h2|e) $ P (h2). It is easy to verify that, for any e,h ∈ Lc , P (h|e) ! P (h) iff z(h, e) ! 0 iff P (¬h|e) $ P (¬h) iff z(¬h, e) $
0. So we have that, for any e,h1,h2 ∈ Lc , P (h1|e) ! P (h1) iff z(h1, e) ! 0 iff P (¬h1|e) $ P (¬h1) iff z(¬h1, e) $ 0 and
P (h2|e) ! P (h2) iff z(h2, e) ! 0 iff P (¬h2|e) $ P (¬h2) iff z(¬h2, e) $ 0. It follows that, for any e,h1,h2 ∈ Lc , z(h1, e) !
z(h2, e) iff z(¬h1, e)$ z(¬h2, e). (ii) Let P ∈ P be such that P (h1|e)% P (h1) and P (h2|e)% P (h2). Then we have that, for any
e,h1,h2 ∈ Lc , z(h1, e) ! z(h2, e) iff 1 − P (¬h1|e)/P (¬h1) ! 1 − P (¬h2|e)/P (¬h2) iff P (¬h1|e)/P (¬h1) $ P (¬h2|e)/P (¬h2)

iff P (¬h1|e)/P (¬h1)− 1 $ P (¬h2|e)/P (¬h2)− 1 iff z(¬h1, e)$ z(¬h2, e). (iii) Finally, let P ∈ P be such that P (h1|e)# P (h1)

and P (h2|e)# P (h2). Then we have that, for any e,h1,h2 ∈ Lc , z(h1, e)! z(h2, e) iff P (h1|e)/P (h1)−1 ! P (h2|e)/P (h2)−1 iff
P (h1|e)/P (h1) ! P (h2|e)/P (h2) iff 1− P (h1|e)/P (h1) $ 1− P (h2|e)/P (h2) iff z(¬h1, e)$ z(¬h2, e). As (i)–(iii) are exhaustive,
for any e,h1,h2 ∈ Lc and any P ∈ P, z(h1, e) ! z(h2, e) iff z(¬h1, e) $ z(¬h2, e). By ordinal equivalence, if there exists a
strictly increasing function f such that C P (h, e) = f [z(h, e)], then A3 follows.

Left-to-right implication

The case of disconfirmation (P (h|e)# P (h))

Note that P (h ∧ e) = [P (h|e)/P (h)]P (h)P (e). As a consequence, by A0, there exist a function j such that, for any e,h ∈ Lc
and any P ∈ P, C P (h, e) = j[P (h|e)/P (h), P (h), P (e)]. With no loss of generality, we will convey probabilistic coherence,
regularity and disconfirmation by constraining the domain of j to include triplets of values (x, y, w) such that the following
conditions are jointly satisfied:

– 0 < y, w < 1;
– x % 0, by which x = P (h|e)/P (h)% 0, so that P (h|e)% 0, and thus P (h ∧ e)% 0;
– x # 1 (conveying disconfirmation, i.e., P (h|e) # P (h)), by which xy = P (h|e) < 1, so that P (h ∧ e) < P (e), and thus

P (¬h ∧ e) > 0, and xw = P (e|h) < 1, so that P (h ∧ e) < P (h), and thus P (h ∧ ¬e) > 0;
– x % (y + w − 1)/yw , by which xyw = P (h ∧ e)% P (h)+ P (e)− 1 = y + w − 1, and thus P (h ∧ e)+ P (¬h ∧ e)+ P (h ∧¬e)
# 1.

We thus posit j : {(x, y, w) ∈ [0,1] × (0,1)2 | x % (y + w − 1)/yw} → % and denote the domain of j as D j .

Lemma 1. For any x, y, w1, w2 such that x ∈ [0,1], y, w1, w2 ∈ (0,1), and x % (y + w1 − 1)/yw1 , (y + w2 − 1)/yw2 , there exist
e1, e2,h ∈ Lc and P ′ ∈ P such that P ′(h|e1)/P ′(h) = P ′(h|e2)/P ′(h) = x, P ′(h) = y, P ′(e1) = w1 , and P ′(e2) = w2 .

Proof. The equalities in Lemma 1 arise from the following scheme of probability assignments:
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P ′(h ∧ e1 ∧ e2) = (xw1)(xw2)y; P ′(¬h ∧ e1 ∧ e2) = (1−xy)2 w1 w2
(1−y) ;

P ′(h ∧ e1 ∧ ¬e2) = (xw1)(1 − xw2)y; P ′(¬h ∧ e1 ∧ ¬e2) = (1 − xy)w1
[
1 − (1−xy)w2

(1−y)

]
;

P ′(h ∧ ¬e1 ∧ e2) = (1 − xw1)(xw2)y; P ′(¬h ∧ ¬e1 ∧ e2) =
[
1 − (1−xy)w1

(1−y)

]
(1 − xy)w2;

P ′(h ∧ ¬e1 ∧ ¬e2) = (1 − xw1)(1 − xw2)y; P ′(¬h ∧ ¬e1 ∧ ¬e2) =
[
1 − (1−xy)w1

(1−y)

][
1 − (1−xy)w2

(1−y)

]
(1 − y).

Suppose there exist (x, y, w1), (x, y, w2) ∈ D j such that j(x, y, w1) )= j(x, y, w2). Then, by Lemma 1 and the defini-
tion of D j , there exist e1, e2,h ∈ Lc and P ′ ∈ P such that P ′(h|e1)/P ′(h) = P ′(h|e2)/P ′(h) = x, P ′(h) = y, P ′(e1) = w1,
and P ′(e2) = w2. Clearly, if the latter equalities hold, then P ′(h|e1) = P ′(h|e2). Thus, there exist e1, e2,h ∈ Lc and P ′ ∈ P
such that C P ′ (h, e1) = j(x, y, w1) )= j(x, y, w2) = C P ′ (h, e2) even if P ′(h|e1) = P ′(h|e2), contradicting A1. Conversely, A1 im-
plies that, for any (x, y, w1), (x, y, w2) ∈ D j , j(x, y, w1) = j(x, y, w2). So, for A1 to hold, there must exist k such that, for
any e,h ∈ Lc and any P ∈ P, if P (h|e) # P (h), then C P (h, e) = k[P (h|e)/P (h), P (h)] and k(x, y) = j(x, y, w). We thus posit
k : {(x, y) ∈ [0,1] × (0,1)} → % and denote the domain of k as Dk .

Lemma 2. For any x, y1, y2 such that x ∈ [0,1] and y1, y2 ∈ (0,1), there exist e,h ∈ Lc and P ′′ ∈ P such that P ′′(h|e)/P ′′(h) =
P ′′(e|h)/P ′′(e) = x, P ′′(h) = y1 , and P ′′(e) = y2 .

Proof. The equalities in Lemma 2 arise from the following scheme of probability assignments:

P ′′(h ∧ e) = xy1 y2; P ′′(¬h ∧ e) = (1 − xy1)y2;
P ′′(h ∧ ¬e) = (1 − xy2)y1; P ′′(¬h ∧ ¬e) = (1 − y1) − (1 − xy1)y2.

Suppose there exist (x, y1), (x, y2) ∈ Dk such that k(x, y1) )= k(x, y2). Then, by Lemma 2 and the definition of Dk , there
exist e,h ∈ Lc and P ′′ ∈ P such that P ′′(h|e)/P ′′(h) = P ′′(e|h)/P ′′(e) = x, P ′′(h) = y1, and P ′′(e) = y2. By the probabil-
ity calculus, if the latter equalities hold, then P ′′(h ∧ e) # P ′′(h)P ′′(e). Thus, there exist e,h ∈ Lc and P ′ ∈ P such that
C P ′′ (h, e) = k(x, y1) )= k(x, y2) = C P ′′ (e,h) even if P ′′(h ∧ e) # P ′′(h)P ′′(e), contradicting A2. Conversely, A2 implies that, for
any (x, y1), (x, y2) ∈ Dk , k(x, y1) = k(x, y2). So, for A2 to hold, there must exist k such that, for any e,h ∈ Lc and any P ∈ P,
if P (h|e)# P (h), then C P (h, e) = m[P (h|e)/P (h)] and m(x) = k(x, y). We thus posit m : [0,1] → % and denote the domain of
m as Dm .

Lemma 3. For any x1, x2 ∈ [0,1], there exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that P ′′′(h|e1)/P ′′′(h) = x1 and P ′′′(h|e2)/P ′′′(h) = x2 .

Proof. Let y, w1, w2 ∈ (0,1) be given so that w1 # (1 − y)/(1 − x1 y) (as the latter quantity must be positive, w1 exists),
and w2 # (1 − y)/(1 − x2 y) (as the latter quantity must be positive, w2 exists). The equalities in Lemma 3 arise from the
following scheme of probability assignments:

P ′′′(h ∧ e1 ∧ e2) = (x1 w1)(x2 w2)y; P ′′′(¬h ∧ e1 ∧ e2) = (1−x1 y)(1−x2 y)w1 w2
(1−y) ;

P ′′′(h ∧ e1 ∧ ¬e2) = (x1 w1)(1 − x2 w2)y; P ′′′(¬h ∧ e1 ∧ ¬e2) = (1 − x1 y)w1
[
1 − (1−x2 y)w2

(1−y)

]
;

P ′′′(h ∧ ¬e1 ∧ e2) = (1 − x1 w1)(x2 w2)y; P ′′′(¬h ∧ ¬e1 ∧ e2) =
[
1 − (1−x1 y)w1

(1−y)

]
(1 − x2 y)w2;

P ′′′(h ∧ ¬e1 ∧ ¬e2) = (1 − x1 w1)(1 − x2 w2)y; P ′′′(¬h ∧ ¬e1 ∧ ¬e2) =
[
1 − (1−x1 y)w1

(1−y)

][
1 − (1−x2 y)w2

(1−y)

]
(1 − y).

Suppose there exist x1, x2 ∈ Dm such that x1 > x2 and m(x1) # m(x2). Then, by Lemma 3 and the definition of Dm , there
exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that P ′′′(h|e1)/P ′′′(h) = x1 and P ′′′(h|e2)/P ′′′(h) = x2. Clearly, if the latter equalities hold,
then P ′′′(h|e1) > P ′′′(h|e2). Thus, there exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that C P ′′′ (h, e1) = m(x1) # m(x2) = C P ′′′ (h, e2)
even if P ′′′(h|e1) > P ′′′(h|e2), contradicting A1. Conversely, A1 implies that, for any x1, x2 ∈ Dm , if x1 > x2 then m(x1) >
m(x2). By a similar argument, A1 also implies that, for any x1, x2 ∈ Dm , if x1 = x2 then m(x1) = m(x2). So, for A1 to hold, it
must be that, for any e,h ∈ Lc and any P ∈ P, if P (h|e)# P (h), then C P (h, e) = m[P (h|e)/P (h)] and m is a strictly increasing
function.

The case of confirmation (P (h|e) > P (h))

Notice that P (h ∧ e) = [1 − P (¬h|e)
P (¬h) P (¬h)]P (e) and P (h) = 1 − P (¬h). As a consequence, by A0, there exist a function

r such that, for any e,h ∈ Lc and any P ∈ P, C P (h, e) = r[P (¬h|e)/P (¬h), P (¬h), P (e)]. With no loss of generality, we will
convey probabilistic coherence, regularity and confirmation by constraining the domain of r to include triplets of values
(x, y, w) such that the following conditions are jointly satisfied:

– 0 < y, w < 1;
– x % 0, by which x = P (¬h|e)/P (¬h)% 0, so that P (¬h|e)% 0, and thus P (¬h ∧ e)% 0;
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– x < 1 (conveying confirmation, i.e., P (h|e) > P (h)), by which xy = P (¬h|e) < 1, so that P (¬h ∧ e) < P (e), and thus
P (h ∧ e) > 0, and xw = P (e|¬h) < 1, so that P (¬h ∧ e) < P (¬h), and thus P (¬h ∧ ¬e) > 0;

– x % (y + w − 1)/yw , by which xyw = P (¬h ∧ e) % P (¬h) + P (e) − 1 = y + w − 1, and thus P (¬h ∧ e) + P (h ∧ e) +
P (¬h ∧ ¬e)# 1.

We thus posit r : {(x, y, w) ∈ [0,1) × (0,1)2 | x % (y + w − 1)/yw} → % and denote the domain of r as Dr .

Lemma 4. For any x, y, w1, w2 such that x ∈ [0,1), y, w1, w2 ∈ (0,1), and x % (y + w1 − 1)/yw1 , (y + w2 − 1)/yw2 , there exist
e1, e2,h ∈ Lc and P ′ ∈ P such that P ′(¬h|e1)/P ′(¬h) = P ′(¬h|e2)/P ′(¬h) = x, P ′(¬h) = y, P ′(e1) = w1 , and P ′(e2) = w2 .

Proof. The equalities in Lemma 4 arise from the following scheme of probability assignments:

P ′(h ∧ e1 ∧ e2) = (1−xy)2 w1 w2
(1−y) ; P ′(¬h ∧ e1 ∧ e2) = (xw1)(xw2)y;

P ′(h ∧ e1 ∧ ¬e2) = (1 − xy)w1
[
1 − (1−xy)w2

(1−y)

]
; P ′(¬h ∧ e1 ∧ ¬e2) = (xw1)(1 − xw2)y;

P ′(h ∧ ¬e1 ∧ e2) =
[
1 − (1−xy)w1

(1−y)

]
(1 − xy)w2; P ′(¬h ∧ ¬e1 ∧ e2) = (1 − xw1)(xw2)y;

P ′(h ∧ ¬e1 ∧ ¬e2) =
[
1 − (1−xy)w1

(1−y)

][
1 − (1−xy)w2

(1−y)

]
(1 − y); P ′(¬h ∧ ¬e1 ∧ ¬e2) = (1 − xw1)(1 − xw2)y.

Suppose there exist (x, y, w1), (x, y, w2) ∈ Dr such that r(x, y, w1) )= r(x, y, w2). Then, by Lemma 4 and the definition
of Dr , there exist e1, e2,h ∈ Lc and P ′ ∈ P such that P ′(¬h|e1)/P ′(¬h) = P ′(¬h|e2)/P ′(¬h) = x, P ′(¬h) = y, P ′(e1) = w1, and
P ′(e2) = w2. By the probability calculus, if the latter equalities hold, then P ′(h|e1) = P ′(h|e2). Thus, there exist e1, e2,h ∈ Lc
and P ′ ∈ P such that C P ′ (h, e1) = r(x, y, w1) )= r(x, y, w2) = C P ′ (h, e2) even if P ′(h|e1) = P ′(h|e2), contradicting A1. Con-
versely, A1 implies that, for any (x, y, w1), (x, y, w2) ∈ Dr , r(x, y, w1) = r(x, y, w2). So, for A1 to hold, there must exist s
such that, for any e,h ∈ Lc and any P ∈ P, if P (h|e) > P (h), then C P (h, e) = s[P (¬h|e)/P (¬h), P (¬h)] and s(x, y) = r(x, y, w).
We thus posit s : {(x, y) ∈ [0,1) × (0,1)} → % and denote the domain of s as Ds .

Lemma 5. For any x, y1, y2 such that x ∈ [0,1) and y1, y2 ∈ (0,1), there exist e,h1,h2 ∈ Lc and P ′′ ∈ P such that
P ′′(¬h1|e)/P ′′(¬h1) = P ′′(¬h2|e)/P ′′(¬h2) = x, P ′′(¬h1) = y1 , and P ′′(¬h2) = y2 .

Proof. Let w ∈ (0,1) be given so that w # (1 − y1)/(1 − xy1), (1 − y2)/(1 − xy2) (as both latter quantities must be positive,
w exists). The equalities in Lemma 5 arise from the following scheme of probability assignments:

P ′′(h1 ∧ h2 ∧ e) = (1 − xy1)(1 − xy2)w; P ′′(¬h1 ∧ h2 ∧ e) = (xy1)(1 − xy2)w;
P ′′(h1 ∧ h2 ∧ ¬e) =

[
1 − (1−xw)y1

(1−w)

][
1 − (1−xw)y2

(1−w)

]
(1 − w); P ′′(¬h1 ∧ h2 ∧ ¬e) = (1 − xw)y1

[
1 − (1−xw)y2

(1−w)

]
;

P ′′(h1 ∧ ¬h2 ∧ e) = (1 − xy1)(xy2)w; P ′′(¬h1 ∧ ¬h2 ∧ e) = (xy1)(xy2)w;
P ′′(h1 ∧ ¬h2 ∧ ¬e) =

[
1 − (1−xw)y1

(1−w)

]
(1 − xw)y2; P ′′(¬h1 ∧ ¬h ∧2 ¬e) = (1−xw)2 y1 y2

(1−w) .

Suppose there exist (x, y1), (x, y2) ∈ Ds such that s(x, y1) )= s(x, y2). Then, by Lemma 5 and the definition of Ds , there
exist e,h1,h2 ∈ Lc and P ′′ ∈ P such that P ′′(¬h1|e)/P ′′(¬h1) = P ′′(¬h2|e)/P ′′(¬h2) = x, P ′′(¬h1) = y1, P ′′(¬h2) = y2. If
the latter equalities hold, then C P ′′ (¬h1, e) = m[P ′′(¬h1|e)/P ′′(¬h1)] = m[P ′′(¬h2|e)/P ′′(¬h2)] = C P ′′ (¬h2, e). Thus, there
exist e,h1,h2 ∈ Lc and P ′′ ∈ P such that C P ′′ (h1, e) = s(x, y1) )= s(x, y2) = C P ′′ (h1, e) even if C P ′′ (¬h1, e) = C P ′′ (¬h2, e),
contradicting A3. So, for A3 to hold, there must exist t such that, for any e,h ∈ Lc and any P ∈ P, if P (h|e) > P (h), then
C P (e,h) = t[P (¬h|e)/P (¬h)] and t(x) = s(x, y). We thus posit t : [0,1) → % and denote the domain of t as Dt .

Lemma 6. For any x1, x2 ∈ [0,1), there exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that P ′′′(¬h|e1)/P ′′′(¬h) = x1 and
P ′′′(¬h|e2)/P ′′′(¬h) = x2 .

Proof. Let y, w1, w2 ∈ (0,1) be given so that w1 # (1 − y)/(1 − x1 y) (as the latter quantity must be positive, w1 exists)
and w2 # (1 − y)/(1 − x2 y) (as the latter quantity must be positive, w2 exists). The equalities in Lemma 6 arise from the
following scheme of probability assignments:

P ′′′(h ∧ e1 ∧ e2) = (1−x1 y)(1−x2 y)w1 w2
(1−y) ; P ′′′(¬h ∧ e1 ∧ e2) = (x1 w1)(x2 w2)y;

P ′′′(h ∧ e1 ∧ ¬e2) = (1 − x1 y)w1
[
1 − (1−x2 y)w2

(1−y)

]
; P ′′′(¬h ∧ e1 ∧ ¬e2) = (x1 w1)(1 − x2 w2)y;

P ′′′(h ∧ ¬e1 ∧ e2) =
[
1 − (1−x1 y)w1

(1−y)

]
(1 − x2 y)w2; P ′′′(¬h ∧ ¬e1 ∧ e2) = (1 − x1 w1)(x2 w2)y;

P ′′′(h ∧ ¬e1 ∧ ¬e2) =
[
1 − (1−x1 y)w1

(1−y)

][
1 − (1−x2 y)w2

(1−y)

]
(1 − y); P ′′′(¬e1 ∧ ¬e2 ∧ ¬h) = (1 − x1 w1)(1 − x2 w2)y.

Suppose there exist x1, x2 ∈ Dt such that x1 > x2 and t(x1) % t(x2). Then, by Lemma 6 and the definition of Dt , there
exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that P ′′′(¬h|e1)/P ′′′(¬h) = x1 and P ′′′(¬h|e2)/P ′′′(¬h) = x2. By the probability calculus,
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if the latter equalities hold, then P ′′′(h|e1) < P ′′′(h|e2). Thus, there exist e1, e2,h ∈ Lc and P ′′′ ∈ P such that C P ′′′ (h, e1) =
t(x1) % t(x2) = C P ′′′ (h, e2) even if P ′′′(h|e1) < P ′′′(h|e2), contradicting A1. Conversely, A1 implies that, for any x1, x2 ∈ Dt , if
x1 > x2, then t(x1) < t(x2). By a similar argument, A1 also implies that, for any x1, x2 ∈ Dt , if x1 = x2, then t(x1) = t(x2). So,
for A1 to hold, it must be that, for any e,h ∈ Lc and any P ∈ P, if P (h|e) > P (h), then C P (e,h) = t[P (¬h|e)/P (¬h)] and t is
a strictly decreasing function.

Summing up, if A0–A3, then for any e,h ∈ Lc and any P ∈ P, (i) if P (h|e) # P (h), then C P (h, e) = m[P (h|e)/P (h)] and
m is a strictly increasing function, thus C P (h, e) is a strictly increasing function of z(h, e), and (ii) if P (h|e) > P (h), then
C P (h, e) = t[P (¬h|e)/P (¬h)] and t is a strictly decreasing function, thus C P (h, e) is a strictly increasing function of z(h, e).
As (i)–(ii) are exhaustive, for A0–A3 to hold, it must be that, for any e,h ∈ Lc and any P ∈ P, C P (h, e) = f [z(h, e)] and f is
a strictly increasing function. !
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We provide a correction to the proof of the main result in Crupi and Tentori (2013).
© 2014 Elsevier B.V. All rights reserved.

Michael Schippers (University of Oldenburg) pointed out to us in personal correspondence an error in the
proof of the main result in Crupi and Tentori [1]. The flaw spotted by Schippers is that Lemma 2 (p. 369)
does not hold in its original formulation: the scheme of assignment there defined does not guarantee that
one ends up with a probabilistically coherent set of values. In order to amend and validate the proof, it is
sufficient to replace Lemma 2 and the subsequent lines (up to Lemma 3) by the following.

Lemma 2 (Corrected). For any x, y1, y2 such that x ∈ [0, 1], y1, y2 ∈ (0, 1), there exist e, h1, h2 ∈ Lc and
P ′′ ∈ P such that P ′′(h1|e)/P ′′(h1) = P ′′(h2|e)/P ′′(h2) = x, P ′′(h1) = y1, and P ′′(h2) = y2.

Proof [Corrected]. Let w ∈ (0,1) be given so that w < (1 − y1)/(1 − xy1), (1 − y2)/(1 − xy2) (as the latter
quantities must all be positive, w exists). The equalities in Lemma 2 arise from the following scheme of
probability assignments

P ′′(h1 ∧ h2 ∧ e) = x2y1y2w; P ′′(¬h1 ∧ h2 ∧ e) = (1 − xy1)xy2w;

P ′′(h1 ∧ h2 ∧ ¬e) = (1 − xw)2y1y2
1 − w

; P ′′(¬h1 ∧ h2 ∧ ¬e) =
[
1 −

(1 − xw)y1
1 − w

]
(1 − xw)y2;

P ′′(h1 ∧ ¬h2 ∧ e) = xy1(1 − xy2)w; P ′′(¬h1 ∧ ¬h2 ∧ e) = (1 − xy1)(1 − xy2)w;

P ′′(h1 ∧ ¬h2 ∧ ¬e) = (1 − xw)y1

[
1 −

(1 − xw)y2
1 − w

]
; P ′′(¬h1 ∧ ¬h2 ∧ ¬e) =

[
1 −

(1 − xw)y1
1 − w

][
1 −

(1 − xw)y2
1 − w

]
(1 − w).

DOI of original article: http://dx.doi.org/10.1016/j.jal.2013.03.002.
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Suppose there exist (x, y1), (x, y2) ∈ Dk such that k(x, y1) "= k(x, y2). Then, by Lemma 2 [Corrected]
and the definition of Dk (see Crupi and Tentori [1, p. 369]), there exist e, h1, h2 ∈ Lc and P ′′ ∈ P such that
P ′′(h1|e)/P ′′(h1) = P ′′(h2|e)/P ′′(h2) = x, P ′′(h1) = y1, P ′′(h2) = y2, and P ′′(e) = w. By the probability
calculus, if the latter equalities hold, then P ′′(h1 ∧ e) ! P ′′(h1)P ′′(e), P ′′(h2 ∧ e) ! P ′′(h2)P ′′(e), and
moreover P ′′(e|h1)/P ′′(e) = P ′′(e|h2)/P ′′(e) = x. Thus, there exist e, h1, h2 ∈ Lc and P ′′ ∈ P such that
either CP ′′(h1, e) = k(x, y1) "= k(x,w) = CP ′′(e, h1) even if P ′′(h1 ∧ e) ! P ′′(h1)P ′′(e), or CP ′′(h2, e) =
k(x, y2) "= k(x,w) = CP ′′(e, h2) even if P ′′(h2 ∧ e) ! P ′′(h2)P ′′(e), contradicting axiom A2 (see Crupi and
Tentori [1, p. 365]). Conversely, A2 implies that, for any (x, y1), (x, y2) ∈ Dk, k(x, y1) = k(x, y2). So, for A2
to hold, there must exist a function m such that, for any e, h ∈ Lc and P ∈ P, if P (h∧ e) ! P (h)P (e), then
CP (h, e) = m[P (h|e)/P (h)] and m(x) = k(x, y). We then posit m : [0, 1] → % and denote the domain of m
as Dm. !

Up to Lemma 2 [Corrected] and then again from Lemma 3 on, the proof proceeds unchanged.1
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