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Introduction

Michael Schippers pointed out to us in personal correspondence an error in
the proof of the main result in Crupi, V. and Tentori, K., ”Confirmation as
partial entailment: A representation theorem”, Journal of Applied Logic, 11
(2013), pp. 364-372. The flaw spotted by Schippers is that Lemma 2 (p. 369)
does not hold in its original formulation. In what follows, we recapitulate the
proof in a corrected fashion. As a matter of fact, however, the only significant
differences will concern Lemma 2 itself.

The theorem

Let L be a (finite) propositional language, Lc the set of the contingent formu-
lae in L (i.e., those expressing neither logical truths nor logical falsehoods),
and P the set of all regular probability functions that can be defined over L
(so that, for any α ∈ Lc and any P ∈ P , 0 < P (α) < 1). We will posit a
function C : {Lc × Lc × P} → < as representing the fundamental inductive-
logical relation of support or confirmation and adopt the notation CP (h, e),
with e, h ∈ Lc denoting the premise (or the conjunction of a collection of
premises) and the conclusion of an inductive argument, respectively.

Axioms

A0 (Formality). There exists a function g such that, for any e, h ∈ Lc and
any P ∈ P , CP (h, e) = g(P (h ∧ e), P (h), P (e)).
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A1 (Final probability incrementality). For any e1, e2, h ∈ Lc and any P ∈ P ,

CP (h, e1) T CP (h, e2) if and only if P (h|e1) T P (h|e2).

A2 (Partial inconsistency). For any e, h ∈ Lc and any P ∈ P , if P (h∧e) ≤
P (h)P (e), then CP (h, e) = CP (e, h).

A3 (Complementarity). For any e, h1, h2 ∈ Lc and any P ∈ P , CP (h1, e) T

CP (h2, e) if and only if CP (¬h1, e) S CP (¬h2, e).

Theorem. A0-A3 hold if and only if there exists a strictly increasing func-
tion f such that CP (h, e) = f [z(h, e)], where

z(h, e) =

{
P (h|e)−P (h)

1−P (h)
if P (h|e) ≥ P (h)

P (h|e)−P (h)
P (h)

if P (h|e) < P (h)

Proof

Right-to-left implication

A0. If there exists a strictly increasing function f such that CP (h, e) =
f [z(h, e)], then A0 is trivially satisfied.

A1. Let e1, e2, h ∈ Lc and P ∈ P be given. Three classes of cases can
obtain. (i) Let P ∈ P be such that P (h|e1) T P (h) T P (h|e2). It is

easy to verify that, for any e, h ∈ Lc and any P ∈ P , P (h|e) T P (h)

iff z(h, e) T 0. So we have that, for any e1, e2, h ∈ Lc, P (h|e1) T P (h)

iff z(h, e1) T 0 and P (h|e2) S P (h) iff z(h, e2) S 0. It follows that,

for any e1, e2, h ∈ Lc, z(h, e1) T z(h, e2) iff P (h|e1) T P (h|e2). (ii)

Let P ∈ P be such that P (h|e1), P (h|e2) ≥ P (h). Then we have that,

for any e1, e2, h ∈ Lc, P (h|e1) T P (h|e2) iff P (¬h|e1) S P (¬h|e2) iff
P (¬h|e1)
P (¬h) S P (¬h|e2)

P (¬h) iff 1− P (¬h|e1)
P (¬h) T 1− P (¬h|e2)

P (¬h) iff z(h, e1) T z(h, e2). (iii)

Finally, let P ∈ P be such that P (h|e1), P (h|e2) ≤ P (h). Then we have

that, for any e1, e2, h ∈ Lc, P (h|e1) T P (h|e2) iff P (h|e1)
P (h)

T P (h|e2)
P (h)

iff
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P (h|e1)
P (h)

−1 T P (h|e2)
P (h)

−1 iff z(h, e1) T z(h, e2). As (i)-(iii) are exhaustive,

for any e1, e2, h ∈ Lc and any P ∈ P , z(h, e1) T z(h, e2) if and only

if P (h|e1) T P (h|e2). By ordinal equivalence, if there exists a strictly

increasing function f such that CP (h, e) = f [z(h, e)], then A1 follows.

A2. Let e, h ∈ Lc and P ∈ P be given so that P (h ∧ e) ≤ P (h)P (e). This
is equivalent to both P (h|e) ≤ P (h) and P (e|h) ≤ P (e). So we have
that, for any e, h ∈ Lc and any P ∈ P , if P (h ∧ e) ≤ P (h)P (e), then
P (h|e)
P (h)

= P (e|h)
P (e)

iff P (h|e)
P (h)

− 1 = P (e|h)
P (e)

− 1 iff z(h, e) = z(e, h). By ordinal
equivalence, if there exists a strictly increasing function f such that
CP (h, e) = f [z(h, e)], then A2 follows.

A3. Let e, h1, h2,∈ Lc and P ∈ P be given. Three classes of cases can
obtain. (i) Let P ∈ P be such that P (h1|e) T P (h1) and P (h2|e) S
P (h2). It is easy to verify that, for any e, h ∈ Lc and any P ∈ P ,

P (h|e) T P (h) iff z(h, e) T 0 iff P (¬h|e) S P (¬h) iff z(¬h, e) S 0.

So we have that, for any e, h1, h2,∈ Lc, P (h1|e) T P (h1) iff z(h1, e) T

0 iff P (¬h1|e) S P (¬h1) iff z(¬h1, e) S 0 and P (h2|e) T P (h2) iff

z(h2, e) T 0 iff P (¬h2|e) S P (¬h2) iff z(¬h2, e) S 0. It follows that,

for any e, h1, h2,∈ Lc, z(h1, e) T z(h2, e) iff z(¬h1, e) S z(¬h2, e).
(ii) Let P ∈ P be such that P (h1|e) ≥ P (h1) and P (h2|e) ≥ P (h2).

Then we have that, for any e, h1, h2,∈ Lc, z(h1, e) T z(h2, e) iff 1 −
P (¬h1|e)
P (¬h1)

T 1− P (¬h2|e)
P (¬h2)

iff P (¬h1|e)
P (¬h1)

S P (¬h2|e)
P (¬h2)

iff P (¬h1|e)
P (¬h1)

− 1 S P (¬h2|e)
P (¬h2)

− 1

iff z(¬h1, e) S z(¬h2, e). (iii) Finally, let P ∈ P be such that P (h1|e) ≤
P (h1) and P (h2|e) ≤ P (h2). Then we have that, for any e, h1, h2,∈ Lc,

z(h1, e) T z(h2, e) iff P (¬h1|e)
P (¬h1)

− 1 T P (¬h2|e)
P (¬h2)

− 1 iff P (¬h1|e)
P (¬h1)

T P (¬h2|e)
P (¬h2)

iff 1 − P (¬h1|e)
P (¬h1)

S 1 − P (¬h2|e)
P (¬h2)

iff z(¬h1, e) S z(¬h2, e). As (i)-(iii) are

exhaustive, for any e, h1, h2 ∈ Lc and any P ∈ P , z(h, e1) T z(h, e2)

if and only if z(¬h1, e) S z(¬h2, e). By ordinal equivalence, if there

exists a strictly increasing function f such that CP (h, e) = f [z(h, e)],
then A3 follows.
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Left-to-right implication

The case of disconfirmation (P (h|e) ≤ P (h))

Note that P (h ∧ e) = P (h|e)
P (h)

P (h)P (e). As a consequence, by A0, there ex-

ists a function j such that, for any e, h ∈ Lc and any P ∈ P , CP (h, e) =

j[P (h|e)
P (h)

, P (h), P (e)]. With no loss of generality, we will convey probabilistic
coherence, regularity, and disconfirmation by constraining the domain of j
to include triplets of values (x, y, w) such that the following conditions are
jointly satisfied:

• 0 < y,w < 1;

• x ≥ 0, by which x = P (h|e)
P (h) ≥ 0, so that P (h|e) ≥ 0, and thus P (h ∧ e) ≥ 0;

• x ≤ 1 (conveying disconfirmation, i.e., P (h|e) ≤ P (h)), by which xy =
P (h|e) < 1, so that P (h ∧ e) < P (e) and thus P (¬h ∧ e) > 0, and xw =
P (e|h) < 1, so that P (h ∧ e) < P (h) and thus P (h ∧ ¬e) > 0;

• x ≥ y+w−1
yw (as y, w < 1, the latter quantity is necessarily lower than 1),

by which xyw = P (h ∧ e) ≥ P (h) + P (e) − 1 = y + w − 1, and thus
P (h ∧ e) + P (¬h ∧ e) + P (h ∧ ¬e) ≤ 1.

We then posit j : {(x, y, w) ∈ [0, 1]×(0, 1)2 | x ≥ y+w−1
yw
} → < and denote

the domain of j as Dj.

Lemma 1. For any x, y, w1, w2 such that x ∈ [0, 1], y, w1, w2 ∈ (0, 1) and
x ≥ y+w1−1

yw1
, y+w2−1

yw2
, there exist e1, e2, h ∈ Lc and P ′ ∈ P such that

P ′(h|e1)
P ′(h)

= P ′(h|e2)
P ′(h)

= x, P ′(h) = y, P ′(e1) = w1, and P ′(e2) = w2.

Proof. The equalities in Lemma 1 arise from the following scheme of prob-
ability assignments:

P ′(h ∧ e1 ∧ e2) = (xw1)(xw2)y
P ′(h ∧ e1 ∧ ¬e2) = (xw1)(1− xw2)y
P ′(h ∧ ¬e1 ∧ e2) = (1− xw1)(xw2)y
P ′(h ∧ ¬e1 ∧ ¬e2) = (1− xw1)(1− xw2)y

P ′(¬h ∧ e1 ∧ e2) = (1−xy)2w1w2

1−y
P ′(¬h ∧ e1 ∧ ¬e2) = (1− xy)w1[1− (1−xy)w2

1−y ]

P ′(¬h ∧ ¬e1 ∧ e2) = [1− (1−xy)w1

1−y ](1− xy)w2

P ′(¬h ∧ ¬e1 ∧ ¬e2) = [1− (1−xy)w1

1−y ][1− (1−xy)w2

1−y ](1− y)
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Suppose there exist (x, y, w1), (x, y, w2) ∈ Dj such that j(x, y, w1) 6=
j(x, y, w2). Then, by Lemma 1 and the definition of Dj, there exist e1, e2, h ∈
Lc and P ′ ∈ P such that P ′(h|e1)

P ′(h)
= P ′(h|e2)

P ′(h)
= x, P ′(h) = y, P ′(e1) = w1,

and P ′(e2) = w2. Clearly, if the latter equalities hold, then P ′(h|e1) =
P ′(h|e2). Thus, there exist e1, e2, h ∈ Lc and P ′ ∈ P such that CP ′(h, e1) =
j(x, y, w1) 6= j(x, y, w2) = CP ′(h, e2) even if P ′(h|e1) = P ′(h|e2), contra-
dicting A1. Conversely, A1 implies that, for any (x, y, w1), (x, y, w2) ∈ Dj,
j(x, y, w1) = j(x, y, w2). So, for A1 to hold, there must exist a function
k such that, for any e, h ∈ Lc and any P ∈ P , if P (h|e) ≤ P (h), then

CP (h, e) = k[P (h|e)
P (h)

, P (h)] and k(x, y) = j(x, y, w). We then posit k : {(x, y) ∈
[0, 1]× (0, 1)} → < and denote the domain of k as Dk.

Lemma 2. For any x, y1, y2 such that x ∈ [0, 1], y1, y2 ∈ (0, 1), there exist

e, h1, h2 ∈ Lc and P ′′ ∈ P such that P ′′(h1|e)
P ′′(h1)

= P ′′(h2|e)
P ′(h2)

= x, P ′′(h1) = y1,

and P ′′(h2) = y2.

Proof. Let w ∈ (0, 1) be given so that w < 1−y1
1−xy1 ,

1−y2
1−xy2 (as the latter

quantities must all be positive, w exists). The equalities in Lemma 2
arise from the following scheme of probability assignments:

P ′′(h1 ∧ h2 ∧ e) = x2y1y2w

P ′′(h1 ∧ h2 ∧ ¬e) = (1−xw)2y1y2
1−w

P ′′(h1 ∧ ¬h2 ∧ e) = xy1(1− xy2)w

P ′′(h1 ∧ ¬h2 ∧ ¬e) = (1− xw)y1[1− (1−xw)y2
1−w ]

P ′′(¬h1 ∧ h2 ∧ e) = (1− xy1)xy2w

P ′′(¬h1 ∧ h2 ∧ ¬e) = [1− (1−xw)y1
1−w ](1− xw)y2

P ′′(¬h1 ∧ ¬h2 ∧ e) = (1− xy1)(1− xy2)w

P ′′(¬h1 ∧ ¬h2 ∧ ¬e) = [1− (1−xw)y1
1−w ][1− (1−xw)y1

1−w ](1− w)

Suppose there exist (x, y1), (x, y2) ∈ Dk such that k(x, y1) 6= k(x, y2).
Then, by Lemma 2 and the definition of Dk, there exist e, h1, h2 ∈ Lc and
P ′′ ∈ P such that P ′′(h1|e)

P ′′(h1)
= P ′′(h2|e)

P ′′(h2)
= x, P ′′(h1) = y1, P

′′(h2) = y2,

and P ′′(e) = w. By the probability calculus, if the latter equalities hold,
then P ′′(h1 ∧ e) ≤ P ′′(h1)P

′′(e), P ′′(h2 ∧ e) ≤ P ′′(h2)P
′′(e), and more-

over P ′′(e|h1)
P ′′(e)

= P ′′(e|h2)
P ′′(e)

= x. Thus, there exist e, h1, h2 ∈ Lc and P ′′ ∈
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P such that either CP ′′(h1, e) = k(x, y1) 6= k(x,w) = CP ′′(e, h1) even if
P ′′(h1 ∧ e) ≤ P ′′(h1)P

′′(e), or CP ′′(h2, e) = k(x, y2) 6= k(x,w) = CP ′′(e, h2)
even if P ′′(h2 ∧ e) ≤ P ′′(h2)P

′′(e), contradicting A2. Conversely, A2 implies
that, for any (x, y1), (x, y2) ∈ Dk, k(x, y1) = k(x, y2). So, for A2 to hold,
there must exist a function m such that, for any e, h ∈ Lc and any P ∈ P , if
P (h|e) ≤ P (h), then CP (h, e) = m[P (h|e)

P (h)
] and m(x) = k(x, y). We then posit

m : [0, 1]→ < and denote the domain of m as Dm.

Lemma 3. For any x1, x2 ∈ [0, 1], there exist e1, e2, h ∈ Lc and P ′′′ ∈ P
such that P ′′′(h|e1)

P ′′′(h)
= x1 and P ′′′(h|e2)

P ′′′(h)
= x2.

Proof. Let y, w1, w2 ∈ (0, 1) be given so that w1 <
1−y

1−x1y
(as the latter

quantity must be positive, w1 exists) and w2 <
1−y

1−x2y
(as the latter

quantity must be positive, w2 exists). The equalities in Lemma 3 arise
from the following scheme of probability assignments:

P ′′′(h ∧ e1 ∧ e2) = (x1w1)(x2w2)y
P ′′′(h ∧ e1 ∧ ¬e2) = (x1w1)(1− x2w2)y
P ′′′(h ∧ ¬e1 ∧ e2) = (1− x1w1)(x2w2)y
P ′′′(h ∧ ¬e1 ∧ ¬e2) = (1− x1w1)(1− x2w2)y

P ′′′(¬h ∧ e1 ∧ e2) = (1−x1y)(1−x2y)w1w2

1−y
P ′′′(¬h ∧ e1 ∧ ¬e2) = (1− x1y)w1[1− (1−x2y)w2

1−y ]

P ′′′(¬h ∧ ¬e1 ∧ e2) = [1− (1−x1y)w1

1−y ](1− x2y)w2

P ′′′(¬h ∧ ¬e1 ∧ ¬e2) = [1− (1−x1y)w1

1−y ][1− (1−x2y)w2

1−y ](1− y)

Suppose there exist x1, x2 ∈ Dm such that x1 > x2 and m(x1) ≤ m(x2).
Then, by Lemma 3 and the definition of Dm, there exist e1, e2, h ∈ Lc and
P ′′′ ∈ P such that P ′′′(h|e1)

P ′′′(h)
= x1 and P ′′′(h|e2)

P ′′′(h)
= x2. Clearly, if the latter

equalities hold, then P ′′′(h|e1) > P ′′′(h|e2). Thus, there exist e1, e2, h ∈ Lc

and P ′′′ ∈ P such that CP ′′′(h, e1) = m(x1) ≤ m(x2) = CP ′′′(h, e2) even if
P ′′′(h|e1) > P ′′′(h|e2), contradicting A1. Conversely, A1 implies that, for any
x1, x2 ∈ Dm, if x1 > x2, then m(x1) > m(x2). By a similar argument, A1 also
implies that, for any x1, x2 ∈ Dm, if x1 = x2, then m(x1) = m(x2). So, for A1
to hold, it must be that, for any e, h ∈ Lc and any P ∈ P , if P (h|e) ≤ P (h),

then CP (h, e) = m[P (h|e)
P (h)

] and m is a strictly increasing function.
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The case of confirmation (P (h|e) > P (h))

Note that P (h ∧ e) = [1 − P (¬h|e)
P (¬h) P (¬h)]P (e) and P (h) = 1 − P (¬h). As a

consequence, by A0, there exists a function r such that, for any e, h ∈ Lc

and any P ∈ P , CP (h, e) = r[P (¬h|e)
P (¬h) , P (¬h), P (e)]. With no loss of general-

ity, we will convey probabilistic coherence, regularity, and confirmation by
constraining the domain of r to include triplets of values (x, y, w) such that
the following conditions are jointly satisfied:

• 0 < y,w < 1;

• x ≥ 0, by which x = P (¬h|e)
P (¬h) ≥ 0, so that P (¬h|e) ≥ 0, and thus P (¬h∧e) ≥

0;

• x < 1 (conveying confirmation, i.e., P (h|e) > P (h)), by which xy = P (¬h|e) <
1, so that P (¬h∧ e) < P (e) and thus P (h∧ e) > 0, and xw = P (e|¬h) < 1,
so that P (¬h ∧ e) < P (¬h) and thus P (¬h ∧ ¬e) > 0;

• x ≥ y+w−1
yw (as y, w < 1, the latter quantity is necessarily lower than 1),

by which xyw = P (¬h ∧ e) ≥ P (¬h) + P (e) − 1 = y + w − 1, and thus
P (¬h ∧ e) + P (h ∧ e) + P (¬h ∧ ¬e) ≤ 1.

We then posit r : {(x, y, w) ∈ [0, 1) × (0, 1)2 | x ≥ y+w−1
yw
} → < and

denote the domain of r as Dr.

Lemma 4. For any x, y, w1, w2 such that x ∈ [0, 1), y, w1, w2 ∈ (0, 1) and
x ≥ y+w1−1

yw1
, y+w2−1

yw2
, there exist e1, e2, h ∈ Lc and P ′ ∈ P such that

P ′(¬h|e1)
P ′(¬h) = P ′(¬h|e2)

P ′(¬h) = x, P ′(¬h) = y, P ′(e1) = w1, and P ′(e2) = w2.

Proof. The equalities in Lemma 4 arise from the following scheme of prob-
ability assignments:

P ′(h ∧ e1 ∧ e2) = (1−xy)2w1w2

1−y
P ′(h ∧ e1 ∧ ¬e2) = (1− xy)w1[1− (1−xy)w2

1−y ]

P ′(h ∧ ¬e1 ∧ e2) = [1− (1−xy)w1

1−y ](1− xy)w2

P ′(h ∧ ¬e1 ∧ ¬e2) = [1− (1−xy)w1

1−y ][1− (1−xy)w2

1−y ](1− y)

P ′(¬h ∧ e1 ∧ e2) = (xw1)(xw2)y
P ′(¬h ∧ e1 ∧ ¬e2) = (xw1)(1− xw2)y
P ′(¬h ∧ ¬e1 ∧ e2) = (1− xw1)(xw2)y
P ′(¬h ∧ ¬e1 ∧ ¬e2) = (1− xw1)(1− xw2)y
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Suppose there exist (x, y, w1), (x, y, w2) ∈ Dr such that r(x, y, w1) 6=
r(x, y, w2). Then, by Lemma 4 and the definition of Dr, there exist e1, e2, h ∈
Lc and P ′ ∈ P such that P ′(¬h|e1)

P ′(¬h) = P ′(¬h|e2)
P ′(¬h) = x, P ′(¬h) = y, P ′(e1) =

w1, and P ′(e2) = w2. By the probability calculus, if the latter equali-
ties hold, then P ′(h|e1) = P ′(h|e2). Thus, there exist e1, e2, h ∈ Lc and
P ′ ∈ P such that CP ′(h, e1) = r(x, y, w1) 6= r(x, y, w2) = CP ′(h, e2) even
if P ′(h|e1) = P ′(h|e2), contradicting A1. Conversely, A1 implies that, for
any (x, y, w1), (x, y, w2) ∈ Dr, r(x, y, w1) = r(x, y, w2). So, for A1 to hold,
there must exist a function s such that, for any e, h ∈ Lc and any P ∈ P ,
if P (h|e) > P (h), then CP (h, e) = s[P (¬h|e)

P (¬h) , P (¬h)] and s(x, y) = r(x, y, w).

We then posit s : {(x, y) ∈ [0, 1) × (0, 1)} → < and denote the domain of s
as Ds.

Lemma 5. For any x, y1, y2 such that x ∈ [0, 1), y1, y2 ∈ (0, 1), there

exist e, h1, h2 ∈ Lc and P ′′ ∈ P such that P ′′(¬h1|e)
P ′′(¬h1)

= P ′′(¬h2|e)
P ′(¬h2)

=

x, P ′′(¬h1) = y1, and P ′′(¬h2) = y2.

Proof. Let w ∈ (0, 1) be given so that w ≤ 1−y1
1−xy1 ,

1−y2
1−xy2 (as the latter

quantities must all be positive, w exists). The equalities in Lemma 5
arise from the following scheme of probability assignments:

P ′′(h1 ∧ h2 ∧ e) = (1− xy1)(1− xy2)w

P ′′(h1 ∧ h2 ∧ ¬e) = [1− (1−xw)y1
1−w ][1− (1−xw)y2

1−w ](1− w)

P ′′(h1 ∧ ¬h2 ∧ e) = (1− xy1)(xy2)w

P ′′(h1 ∧ ¬h2 ∧ ¬e) = [1− (1−xw)y1
1−w ](1− xw)y2

P ′′(¬h1 ∧ h2 ∧ e) = (xy1)(1− xy2)w

P ′′(¬h1 ∧ h2 ∧ ¬e) = (1− xw)y1[1− (1−xw)y2
1−w ]

P ′′(¬h1 ∧ ¬h2 ∧ e) = (xy1)(xy2)w

P ′′(¬h1 ∧ ¬h2 ∧ ¬e) = (1−xw)2y1y2
1−w

Suppose there exist (x, y1), (x, y2) ∈ Ds such that s(x, y1) 6= s(x, y2).
Then, by Lemma 5 and the definition of Ds, there exist e, h1, h2 ∈ Lc and
P ′′ ∈ P such that P ′′(¬h1|e)

P ′′(¬h1)
= P ′′(¬h2|e)

P ′′(¬h2)
= x, P ′′(¬h1) = y1, P

′′(¬h2) = y2, and

P ′′(e) = w. If the latter equalities hold, then CP ′′(¬h1, e) = m[P
′′(¬h1|e)
P ′′(¬h1)

] =

m[P
′′(¬h2|e)
P ′′(¬h2)

] = CP ′′(¬h2, e). Thus, there exist e, h1, h2 ∈ Lc and P ′′ ∈ P
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such that CP ′′(h1, e) = s(x, y1) 6= s(x, y2) = CP ′′(h2, e) even if CP ′′(¬h1, e) =
CP ′′(¬h2, e), contradicting A3. Conversely, A3 implies that, for any (x, y1), (x, y2) ∈
Ds, s(x, y1) = s(x, y2). So, for A3 to hold, there must exist a function
t such that, for any e, h ∈ Lc and any P ∈ P , if P (h|e) > P (h), then

CP (h, e) = t[P (¬h|e)
P (¬h) ] and t(x) = s(x, y). We then posit t : [0, 1) → < and

denote the domain of t as Dt.

Lemma 6. For any x1, x2 ∈ [0, 1), there exist e1, e2, h ∈ Lc and P ′′′ ∈ P
such that P ′′′(¬h|e1)

P ′′′(¬h) = x1 and P ′′′(¬h|e2)
P ′′′(¬h) = x2.

Proof. Let y, w1, w2 ∈ (0, 1) be given so that w1 <
1−y

1−x1y
(as the latter

quantity must be positive, w1 exists) and w2 <
1−y

1−x2y
(as the latter

quantity must be positive, w2 exists). The equalities in Lemma 6 arise
from the following scheme of probability assignments:

P ′′′(h ∧ e1 ∧ e2) = (1−x1y)(1−x2y)w1w2

1−y
P ′′′(h ∧ e1 ∧ ¬e2) = (1− x1y)w1[1− (1−x2y)w2

1−y ]

P ′′′(h ∧ ¬e1 ∧ e2) = [1− (1−x1y)w1

1−y ](1− x2y)w2

P ′′′(h ∧ ¬e1 ∧ ¬e2) = [1− (1−x1y)w1

1−y ][1− (1−x2y)w2

1−y ](1− y)

P ′′′(¬h ∧ e1 ∧ e2) = (x1w1)(x2w2)y
P ′′′(¬h ∧ e1 ∧ ¬e2) = (x1w1)(1− x2w2)y
P ′′′(¬h ∧ ¬e1 ∧ e2) = (1− x1w1)(x2w2)y
P ′′′(¬h ∧ ¬e1 ∧ ¬e2) = (1− x1w1)(1− x2w2)y

Suppose there exist x1, x2 ∈ Dt such that x1 > x2 and t(x1) ≥ t(x2).
Then, by Lemma 6 and the definition of Dt, there exist e1, e2, h ∈ Lc and
P ′′′ ∈ P such that P ′′′(¬h|e1)

P ′′′(¬h) = x1 and P ′′′(¬h|e2)
P ′′′(¬h) = x2. By the probability

calculus, if the latter equalities hold, then P ′′′(h|e1) < P ′′′(h|e2). Thus, there
exist e1, e2, h ∈ Lc and P ′′′ ∈ P such that CP ′′′(h, e1) = t(x1) ≥ t(x2) =
CP ′′′(h, e2) even if P ′′′(h|e1) < P ′′′(h|e2), contradicting A1. Conversely, A1
implies that, for any x1, x2 ∈ Dt, if x1 > x2, then t(x1) < t(x2). By a
similar argument, A1 also implies that, for any x1, x2 ∈ Dt, if x1 = x2, then
t(x1) = t(x2). So, for A1 to hold, it must be that, for any e, h ∈ Lc and

any P ∈ P , if P (h|e) > P (h), then CP (h, e) = t[P (¬h|e)
P (¬h) ] and t is a strictly

decreasing function.
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Summing up, if A0-A3 hold, then for any e, h ∈ Lc and any P ∈ P , (i)

in case P (h|e) ≤ P (h), CP (h, e) = m[P (h|e)
P (h)

] and m is a strictly increasing

function, thus CP (h, e1) is a strictly increasing function of z(h, e), and (ii)

in case P (h|e) > P (h), CP (h, e) = t[P (¬h|e)
P (¬h) ] and t is a strictly decreasing

function, thus CP (h, e) is again a strictly increasing function of z(h, e). As
(i)-(ii) are exhaustive, for A0-A3 to hold, it must be that, for any e, h ∈ Lc

and any P ∈ P , CP (h, e) = f [z(h, e)] and f is a strictly increasing function.
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