
addressed by having a fixed (but large) dimensionality for all rep-
resentations. If HAPPY is a particular 500-dimensional vector,
and EMPLOYED is a different 500-dimensional vector, then
HAPPY⊛EMPLOYED gives a new 500-dimensional vector (a
tensor product would give a 250,000-dimensional vector). Impor-
tantly, in high-dimensional spaces, the newly created vector is
highly likely to be (almost) orthogonal to the original vectors.
This gives a close approximation to all of the required orthogonal-
ity requirements mentioned in the target article, but does not lead
to an unlimited explosion of dimensions as representations get
more complicated. As we have shown elsewhere, adult human
vocabularies fit well within 500 dimensional spaces (Eliasmith,
in press).

Given cognitive theories expressed in terms of vector symbolic
architectures, we have created large-scale neural models that
implement those theories. In particular, we use the neural engin-
eering framework (NEF; Eliasmith & Anderson 2003), which
gives a principled method for determining how realistic spiking
neurons can represent vectors, how connections between
neurons can implement computations on those vectors, and how
recurrent connections can be used to provide memory and
other dynamics. This allows us to turn abstract descriptions of cog-
nitive processing into specific brain mechanisms, connecting a
plethora of neural data (functional magnetic resonance imaging
[fMRI], electroencephalograms [EEG], single cell recordings)
to cognitive function.

In the NEF, distributed representations of vectors are made by
generalizing the standard notion of each neuron having a particu-
lar preferred direction vector (e.g., Georgopoulos et al. 1986).
Whereas Hebbian learning rules can be used to adjust connection
weights, we can also directly solve for the desired connection
weights, as this kind of distributed representation allows a much
larger range of functions to be computed in a single layer of con-
nections than is seen in typical connectionist models. This makes it
straightforward to create models that accurately compute linear
operations (such as the dot product), and even more complex
functions such as a full 500-dimensional circular convolution.
These models are robust to neuron death and exhibit realistic
variability in spiking behavior, tuning curves, and other neural
properties.

Although these techniques have not yet been used on the
specific tasks and theories presented in the target article, all of
the operations mentioned in the article have been implemented
and scaled up to human-sized vocabularies (e.g., Eliasmith
2005; Stewart et al. 2011). Furthermore, we have shown how to
organize a neural control structure around these components
(based on the cortex–basal ganglia–thalamus loop) so as to
control the use of these components (e.g., Eliasmith, in press;
Stewart & Eliasmith 2011). This architecture can be used to
control the process of first projecting the current state onto one
vector (HAPPY) and then on to another (EMPLOYED),
before sending the result to the motor system to produce
an output. These neural models generate response timing pre-
dictions with no parameter tuning (e.g., Stewart et al. 2010),
and show how the neural implementation affects overall be-
havior. For example, the neural approximation of vector normal-
ization explains human behavior on list memory tasks better
than the ideal mathematical normalization (Choo & Eliasmith
2010).

Although the NEF provides a neural mechanism for all of
the models discussed in the target article, it should be noted
that this approach does not require Gleason’s theorem, a core
assumption of QP (sect. 4.3). That is, in our neural implemen-
tations, the probability of deciding one is HAPPY can be depen-
dent not only on the length of the projection of the internal state
and the ideal HAPPY vector, but also on the lengths of the other
competing vectors, the number of neurons involved in the rep-
resentations, and their neural properties, all while maintaining
the core behavioral results. Resolving this ambiguity will be a
key test of QP.

Why quantum probability does not explain the
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Abstract:We agree with Pothos & Busemeyer (P&B) that formal tools can
be fruitfully employed to model human judgment under uncertainty,
including well-known departures from principles of classical probability.
However, existing findings either contradict P&B’s quantum probability
approach or support it to a limited extent. The conjunction fallacy serves
as a key illustration of both kinds of problems.

Pothos & Busemeyer’s (P&B’s) argument in favor of a quantum
probability (QP) approach to cognitive modeling relies on the fol-
lowing premises:
1. A large amount of empirical findings accumulated in the last

40 years shows that human judgment often violates key aspects of
classical probability (CP) theory.
2. Heuristic-based approaches, although interesting, are often

limited in their applicability and explanatory scope.
3. It is possible to model probability judgment on the basis of

formal tools, and use these to re-express and sharpen popular
heuristics.
We agree with P&B on all the mentioned assumptions.

However, we depart from P&B in our assessment of the potential
of their QP approach for achieving a better understanding of
human judgments under uncertainty. We will illustrate our per-
spective with reference to the conjunction fallacy (CF) (Tversky
& Kahneman 1982; 1983). The CF plays a key role in P&B’s argu-
ment because P&B claim that this prominent violation of CP laws
has a natural and straightforward explanation in their QP
approach. In what follows, we will illustrate two main problems
that arise with regard to P&B’s interpretation of the CF results.
The first problem is that the QP approach is contradicted by

empirical data. To begin with, it is unable to accommodate double
conjunction fallacies (e.g., themile run scenario in Tversky & Kahne-
man 1983, p. 306) – that is, all those situations in which h1∧h2 is
ranked over each of h1 and h2 appearing in isolation (Busemeyer
et al. 2011, p. 202). Several single conjunction fallacy results are
also demonstrably inconsistent with the QP approach. For example,
suppose that, given some evidence e, the most likely statement has
to be chosen among three, namely, a single hypothesis h1 and two
conjunctions, h1∧h2 and h1∧∼h2, as in the following scenario:

K. is a Russian woman. [e]
Which of the following hypotheses
do you think is the most probable?
– K. lives in New York. [h1]
– K. lives in New York and is an interpreter. [h1∧h2]
– K. lives in New York and is not an interpreter. [h1∧∼h2]

Tentori et al. (2013) observed that P(h2|e∧h1) < P(∼h2 |e∧h1)
for the majority of participants. One can just as safely assume
that P(h2|e) < P(∼h2|e), as clearly only a tiny fraction of Russian
women are interpreters. On these assumptions, the QP account
of the conjunction fallacy demonstrably predicts that the judged
probability of h1∧h2 must be lower than that of h1∧∼h2 (see
Fig. 1), and, therefore, that fallacious choices for h1∧h2 must be
less than those for h1∧∼h2.
However, in contrast to this prediction, a significant majority

(70%) of the fallacious responses in the Russian woman scenario
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concerned h1∧h2 rather than h1∧∼h2. More generally, one can
prove that, for the QP account, if P(h2|e)≤ P(h3|e) and P(h2|
e∧h1)≤ P(h3|e∧h1), the judged probability of the conjunction
h1∧h2 on the assumption of e cannot be higher than that of
h1∧h3. In a series of four experimental studies (which employed
different elicitation procedures, experimental designs, classes of
problems, and content), Tentori et al. (2013) documented a
robust pattern of results inconsistent with this implication of the
QP model, as well as with other recent proposals, such as the aver-
aging (Nilsson et al. 2009) and the random error (Costello 2009)
hypotheses, which imply that CF rates should rise as the perceived
probability of the added conjunct does. The results supported a
different explanation of the CF, based on the notion of inductive
confirmation (Crupi et al. 2008). Much like the QP approach,
this explanation relies on a well-defined formalism (Bayesian confir-
mation theory) while avoiding the limitations (e.g., post-hoc par-
ameters) that P&B (sect. 4.1) ascribe to other Bayesian models.

The second problem is that, even when logically consistent with
the empirical data, P&B’s treatment nonetheless receives limited
support. The QPmodeler is typically left with a number of choices
that are unconstrained by the model itself. Lacking independent
and clearly defined empirical input, the modeling exercise does

not achieve explanatory relevance. The Linda scenario serves as
an illustration. For their QP approach to account for the reported
judgment P(bank teller ∧ feminist) > P(bank teller), P&B need to
make various assumptions (sect. 3.1) on the angle between the
basis vectors, as well as on the position of the state vector.
Some of these assumptions are uncontroversial. Others are
quite subtle, however, and have non-trivial consequences. As
the left column of Figure 2 shows, keeping basis vectors equal,
a small shift in the position of the state vector is enough to
reverse the predicted ranking between P(bank teller ∧ feminist)
and P(bank teller) even if the perceived probability of the feminist
conjunct remains much higher than that of bank teller.

A similar situation arises with the Scandinavia scenario (Tentori
et al. 2004):

Suppose we choose at random an individual from
the Scandinavian population.

[e]

Which do you think is the most probable?
– The individual has blond hair. [h1]
– The individual has blond hair and blue eyes. [h1∧h2]
– The individual has blond hair and does not
have blue eyes.

[h1∧∼h2]

Figure 1 (Tentori & Crupi). A QP representation of the Russian woman scenario. To simplify notation, P is taken to already encode the
evidence e (Russian). In line with participants’ judgment, the basis vectors are displayed as to imply P(h2|h1) < P(∼h2|h1), whereas the
position of the state vector implies P(h2) < P(∼h2), as clearly only a tiny fraction of Russian women are interpreters. Under these
conditions, if we assume – as it seems plausible – that P(h1)≥ P(h2), the QP approach does not allow for the conjunctive probability
of h1 and h2 to rank higher than the single conjunct h1. However, the QP approach yields the wrong prediction even if we assume
P(h1) < P(h2). As the figure illustrates, in this case, contrary to the participants’ judgment, it is the conjunctive probability of h1 and
∼h2, not that of h1 and h2, which must rank highest.
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Does the QP approach predict the observed prevalence of fal-
lacious choices for h1∧h2? This crucially depends on how we
determine the vector space.

The right column of Figure 2 shows two different rep-
resentations of the Scandinavia scenario (the state vector
and the h2 basis vector are simply switched). The QP
approach allows for both, and both appear reasonable.
However, yet again, in the two cases, opposite orderings of
P(h1∧h2) and P(h1) follow from the QP approach. For an
observed judgment to be taken as properly supporting the
QP explanation of the CF, the corresponding vector space
representation needs to be constrained on independently
motivated empirical grounds. Otherwise, we can only say
that the QP approach can be made compatible with some
(and not all) of the CF data. However, for a putatively com-
prehensive theoretical framework, being able to accommo-
date some empirical results does not equal predicting and
explaining a phenomenon.
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Abstract: The attempt to employ quantum principles for modeling
cognition has enabled the introduction of several new concepts in
psychology, such as the uncertainty principle, incompatibility,
entanglement, and superposition. For many commentators, this is
an exciting opportunity to question existing formal frameworks
(notably classical probability theory) and explore what is to be
gained by employing these novel conceptual tools. This is not to
say that major empirical challenges are not there. For example,

Figure 2 (Tentori & Crupi). Two different plausible QP representations of the Linda and Scandinavia scenarios. The positioning of the
vectors in the top half is compatible with the observed conjunction fallacy judgment P(h1∧h2) > P(h1), whereas that in the bottom half is not.
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