
Epistemologists often frame inductive reasoning within 
theories of hypothesis confirmation. Bayesian accounts 
of confirmation qualify piece of evidence E as having 
a positive/negative impact on hypothesis H to the extent 
that verifying E increases/decreases the credibility of H. 
Thus, in the usual circumstances, a market plunge in 
Europe tomorrow increases the probability of a similar 
plunge in New York, whereas playing rugby decreases 
the credibility of being a violinist. Let us observe that 
change in credibility (or confirmation) is not the same 
as conditional probability. For, otherwise, an Italian vic-
tory in the next World Cup would maximally confirm the 
hypothesis that it will rain in Seattle sometime in 2020, 
since the conditional probability of the latter given the 
former is near unity. (As they seem to be completely inde-
pendent, the two statements have no confirmatory impact 
on each other.)

Bayesian confirmation measures acknowledge the re-
lation between impact and posterior probability by sat-
isfying the “classificatory” condition (due to Carnap, 

1950/1962, pp. 21–22) shown in (1), below. Several mea-
sures of confirmation satisfying Carnap’s condition have 
been proposed (for discussion and comparison see Crupi, 
Tentori, & Gonzalez, 2007; Eells & Fitelson, 2002).1 Two 
among them are given in (2) (Good, 1983; Kemeny & 
Oppenheim, 1952) and (3) (Crupi et al., 2007).
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All Bayesian confirmation measures thus far proposed 
share a property identified in Tentori, Crupi, and Osherson 
(2007) called formality. A confirmation measure (with 
arguments E and H) is formal if, and only if, it is deter-
mined by the probability distribution over the algebra gen-
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second-order probability hypothesis. The difference be-
tween confirmation judgments in the urn setting versus 
men/women scenario may depend on difference in content 
(e.g., concrete vs. abstract) without mediation by second-
order probability. In this case, confirmation judgments 
could still be formal in a weaker sense—that is, relative 
to a given semantic domain. In other words, queries in-
volving the same kind of scenario in which the relevant 
probabilities are equated might yield equivalent judgments 
of confirmation, but equivalence across different domains 
would not necessarily hold.

In the following experiments, we provide evidence 
against the weak-formality hypothesis, favoring second-
order probability instead. This is achieved by comparing 
confirmation judgments from pairs of problems within 
the same semantic domain that are equivalent in terms of 
Pr(E∧H), Pr(E∧¬H), Pr(¬E∧H), and Pr(¬E∧¬H) but dif-
fer in terms of the probability with which such quantities 
can be identified.

Experiment 1

Method
Participants. Forty-four students from the University of Trento 

participated in the experiment (22 female; mean age, 24.9 years). 
In order to allow direct manipulation of second-order probability 
levels, all confirmation judgments were elicited in a setting involv-
ing urns. Participants were randomly divided into two groups of 22. 
A given participant performed his/her task twice, each time with 
reference to a different pair of urns, as now described. (In the follow-
ing procedure, all events described as random to participants were 
genuine results of chance.)

Procedure and Materials. The two pairs of urns presented to 
Group 1 are labeled (A10,B10) and (C10,D10)—the subscript “10” 
denotes the number of balls in each urn—and were composed as 
follows:

Number of Number of
Urn  Red Balls  Green Balls

A10 7 3
B10 3 7
C10 9 1
D10  1  9

The order of presentation of (A10,B10) and (C10,D10) was counter-
balanced across participants. The procedure was the same for the two 
pairs; we illustrate with (A10,B10). Participants first verified the com-
position of the urns by counting the number of balls of each color. 
It was then explained that a coin toss would determine the choice of 
one of the two urns, the outcome being kept hidden. The coin was 
tossed, one urn was covertly selected, and the other was set aside. 
Next, the chosen urn was shaken, the participant was asked to blindly 
draw a ball from it, and the color of the chosen ball was exposed. For 
the remainder of the trial, the chosen ball remained in view along 
with a reminder (both numerical and graphical) of the composition 
of the pair of urns at issue. Finally, participants were asked to mark 
a position on an “impact scale” to indicate how the outcome of the 
draw influenced their current conviction that a given urn (e.g., A10) 
had been selected by the coin toss. A fresh copy of the scale was then 
used to express the evidential impact of the same draw for the other 
urn (B10). The impact scale was a 20-cm-long line printed on a strip 
of paper (see Figure 1). It had two opposite directions (corresponding 
to positive and negative impacts, respectively) as well as a neutral 
point in the middle (corresponding to no impact).

The two pairs of urns presented to Group 2 are labeled (A100,B100) 
and (C100,D100), and were composed as follows:

erated by E and H. In other words, a formal confirmation 
measure depends on just the four probabilities Pr(E∧H), 
Pr(E∧¬H), Pr(¬E∧H), and Pr(¬E∧¬H). To illustrate, l is 
formal because it is a function of Pr(E|H) and Pr(E|¬H), 
which can both be expressed in terms of the four probabil-
ities above; specifically, Pr(E|H) 5 Pr(E∧H) / [Pr(E∧H) 1 
Pr(¬E∧H)], and similarly for Pr(E|¬H). Likewise, z and 
all other Bayesian confirmation measures yet proposed 
are formal.

We can illustrate the implications of formality as fol-
lows. Consider the extraction of an individual from a 
random sample of 100 men and 100 women. Imagine 
you are informed that the drawn individual likes cigars. 
How much does this influence your opinion about the 
hypothesis that the individual selected is male? Imag-
ine now that your probability estimates concerning the 
proportions of men versus women who like cigars are 
elicited and transferred to an urn with red versus blue 
and striped versus spotted balls. Specifically, the number 
of red/blue striped balls in the urn corresponds to your 
estimate of the number of men/women in the sample who 
like cigars, whereas the number of red/blue spotted balls 
in the urn correspond to your estimate of the number of 
men/women in the sample who do not like cigars. A ball 
is drawn from this urn. You are informed that the drawn 
ball is striped. How much does this influence your opin-
ion about the drawn ball being red? Will you express 
the same confirmation judgment as in the isomorphic 
problem involving men and cigars? Because the relevant 
probabilities are identical across the two problems, for-
mality requires that your respective judgments of confir-
mation coincide.

But, typically, they do not. Using stimuli of the fore-
going kind, Tentori, Crupi, and Osherson (2007) showed 
that the function governing people’s judgments of confir-
mation are not usually formal. In particular, they found 
that confirmation judgments in the urn setting were more 
extreme versions of corresponding judgments in the men/
women scenario (i.e., urns produced higher values for 
positive impact, lower for negative impact). Confirmation 
seems therefore to depend on more than just Pr(E∧H), 
Pr(E∧¬H), Pr(¬E∧H), and Pr(¬E∧¬H).

Tentori, Crupi, and Osherson (2007) speculated that 
subjective assessments of confirmation may depend on 
the reasoner’s degree of belief (or confidence) in the 
probabilities in play. The missing variable from for-
mality might then be identified with a second-order 
probability—a  probability distribution defined over 
the possible values of Pr(E∧H), Pr(E∧¬H), Pr(¬E∧H), 
and Pr(¬E∧¬H). Thus, unlike the sharp chances of the 
urn setting, the probability values elicited in the men/
women scenario presumably have a probability lower 
than 1, perhaps because they bring to mind one’s rela-
tive ignorance of the topic at issue (e.g., smoking hab-
its). Such a lower second-order probability might trigger 
more cautious confirmation judgments, biased toward 
less extreme values.

The evidence presented by Tentori, Crupi, and Osh-
erson (2007), however, does not definitively support the 
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There were no judgments of positive/negative impact 
when the posterior probability was lower/higher than the 
prior. This suggests that the task was appropriately under-
stood by participants.

The mean and median confirmation judgments reported 
by the two groups are shown in Table 1. In line with the 
confidence hypothesis, Group 2 confirmation judgments 
are less extreme than those of Group 1. This difference is 
statistically significant for all four relevant matched pairs 
by both an independent samples t test ( p , .05) and a 
Mann–Whitney U test ( p , .05). Thus, within the same 
semantic domain (namely, urns), evidence can have dif-
ferent impacts on given hypotheses. Our results therefore 
contradict the weak-formality hypothesis: Lower second-
order probability leads to less extreme confirmation judg-
ments, despite all equalities in (4).

If formality is to be retained as a normative property 
of confirmation, it is necessary to qualify Group 1 rat-
ings as too extreme, or Group 2 ratings as too moderate, 
or both. The choice obviously presupposes a normative 
benchmark. For this purpose, we focus on the measures 
l and z in (2) and (3), respectively. They have been shown 
to enjoy a number of desirable properties not satisfied by 
rivals (Crupi et al., 2007; Eells & Fitelson, 2002). More-
over, at the descriptive level, they are the best predictors of 
confirmation judgment (Crupi et al., 2007; Tentori, Crupi, 
Bonini, & Osherson, 2007). Each of l and z achieves a 
fixed finite maximum [minimum] value if E implies [con-
tradicts] H.2 We may set these two values at 110 and 210, 
respectively, corresponding to our rating scale (see Fig-

Number of Number of
Urn  Red Balls  Green Balls

A100 70 30
B100 30 70
C100 90 10
D100  10  90

The order of presentation of (A100,B100) and (C100,D100) was 
counterbalanced across participants. The procedure was the same 
for the two pairs; we illustrate with (A100,B100). Participants first 
verified the composition of the urns by counting the number of balls 
of each color. Subsequently, they were asked to blindly draw 10 balls 
from one of the two urns (e.g., A100) and to place them, still blindly, 
into another empty opaque urn, thus forming a new urn (A*

10). The 
same was done for the other urn (B100). Concerning the new pair of 
urns (A*

10,B*
10), participants then performed the same procedure as 

Group 1.
In Group 1, the exact composition of the urns at issue is known 

so that maximum probability is attached to corresponding probabil-
ity values connecting ball colors and urns (maximum second-order 
probability). In contrast, in Group 2 the composition of A*

10, B*
10, C*

10, 
and D*

10 obeys hypergeometric distributions allowing in principle 
any possible combination of red and green balls (low second-order 
probability). The following equalities, however, were preserved by 
the procedure (see the Appendix for relevant calculations):

	 Pr(red∧A10) 5 Pr(red∧A*
10) 

	   5 Pr(green∧B10)
	   5 Pr(green∧B*

10) 5 .35,	

	 Pr(green∧A10) 5 Pr(green∧A*
10) 

	 5 Pr(red∧B10)
	 5 Pr(red∧B*

10) 5 .15,	

	 Pr(red∧C10) 5 Pr(red∧C*
10) 

	 5 Pr(green∧D10)
	 5 Pr(green∧D*

10) 5 .45,	

	 Pr(green∧C10) 5 Pr(green∧C*
10) 

	 5 Pr(red∧D10)
	 5 Pr(red∧D*

10) 5 .05.	 (4)

The weak-formality hypothesis thus implies equal confirmation 
judgments across the two groups. In contrast, if low second-order 
probability makes confirmation less extreme, responses in Group 2 
should be more cautious than those in Group 1.

Results
All pairs of urns were symmetrical in composition—for 

example, 7 red versus 3 green balls for A10, and 3 red ver-
sus 7 green balls for B10. We therefore aggregated judg-
ments concerning positive impact (e.g., the impact of a 
red ball on A10 with that of a green ball on B10), as well as 
judgments concerning negative impact (e.g., the impact of 
a green ball on A10 with that of a red ball on B10).

the information that
the drawn ball is .........

does not strengthen
or weaken

the hypothesis that
urn A10 [B10, C10, D10 ] was selected

weakens strengthens

maximally
weakens

maximally
strengthens

Figure 1. The impact scale employed. Dots were filled with the color of the drawn ball (red vs. green).

Table 1 
Mean and Median Confirmation Judgments Observed  

in Groups 1 and 2, and Corresponding Tests for  
Significance of Differences 

Group 1 Group 2 Group 1 Versus 
(A10;B10) (A*

10;B*
10) Group 2

Impact  Mean  Median  Mean  Median  t  z

Positive 3.8 4 2.3 2 2.2† 22.1†

Negative 23.6 24 22.1 22 22.4† 22.3†

Group 1 Group 2 Group 1 Versus 
(C10;D10) (C*

10;D*
10) Group 2

Mean  Median  Mean  Median  t  z

Positive 7.7 8 5.3 6 3.2† 23.1†

Negative 27.4 28 24.5 25 23.5† 23.2†

†p , .05, one-tailed.
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tive values (.7 and .9) by one-sample t test and one-sample 
Wilcoxon test. We can conclude that the procedure adopted 
for Group 2 in Experiment 1 conveys a transparent repre-
sentation of the sampling process, producing appropriate 
assessments of the probability values appearing in (4).

A second concern is related to a documented tendency, 
labeled “ratio bias,” to judge the probability of an event 
as different when expressed as a ratio of small (e.g., 1:10) 
versus large (e.g., 10:100) numbers (see, e.g., Denes-
Raj & Epstein, 1994; Kirkpatrick & Epstein, 1992). The 
proportion of red versus green balls initially provided to 
Groups 1 and 2 was the same, but it referred to samples 
of different size—namely, a 10-ball urn for Group 1 ver-
sus a 100-ball urn for Group 2. In order to check for the 
possible effect of this difference in numerosity, we car-
ried out a further control experiment. Twenty-two students 
from the University of Trento participated in this experi-
ment (10 female; mean age, 24.4 years), henceforth called 
Group 3. None had participated in the previous experi-
ments. The procedure for Group 3 was identical to that for 
Group 1 except that the hundred-ball urns A100, B100, C100, 
D100 initially presented to Group 2 were used in place of 
A10, B10, C10, D10.

The confirmation judgments expressed by Group 3 are 
reported in Table 2, and compared to the judgments of 
the two groups from Experiment 1. It can be seen that the 
Group 3 judgments differ significantly by both indepen-
dent samples t test ( p , .05) and Mann–Whitney U test 
( p , .05) from those of Group 2, and are more extreme. 
On the other hand, Group 3 judgments do not differ sig-
nificantly from those of Group 1, despite the difference in 
the number of balls per urn. This pattern of results rules 
out the possibility that the contrasting judgments between 
Groups 1 and 2 are a consequence of the different num-
bers of balls presented at the outset. The results from 
Group 3 once again discredit weak formality, and support 
the hypothesis that judged confirmation depends partly on 
second-order probability.

Discussion

A confirmation measure CONF is formal if CONF(E,H) 
is determined by the four probabilities Pr(E∧H), Pr(E∧¬H), 

ure 1). It then turns out that the two measures produce the 
same values for the events in our experiment, as follows:

	 CONF(red,A10)	5 CONF(red,A*
10) 

	 	 5 CONF(green,B10) 
	 	 5 CONF(green,B*

10) 5 14,

	 CONF(green,A10)	5 CONF(green,A*
10) 

	 	 5 CONF(red,B10) 
	 	 5 CONF(red,B*

10) 5 24,

	 CONF(red,C10)	5 CONF(red,C*
10) 

	 	 5 CONF(green,D10) 
	 	 5 CONF(green,D*

10) 5 18,

	 CONF(green,C10)	5 CONF(green,C*
10) 

	 	 5 CONF(red,D10) 
	 	 5 CONF(red,D*

10) 5 28.

Comparison with Table 1 reveals that the confirmation 
judgments of Group 1 are remarkably close to those ad-
vocated by l and z. Group 2, in contrast, diverges from 
the l, z recommendations ( p , .05 for all four relevant 
matched pairs by both one-sample t test and one-sample 
Wilcoxon test). If formality is adopted as a normative de-
sideratum, it thus appears that confirmation assessment 
is sound in Group 1 (maximum second-order probability) 
but too moderate in Group 2 (low second-order probabil-
ity). None of this, of course, is a reason to adopt formality 
as a desirable property of confirmation measures.

Control Experiments

Before embracing the conjecture that second-order 
probability affects confirmation, we must address two po-
tential ambiguities in the procedure of Experiment 1.

First, it is necessary to ensure that the equalities in (4) 
hold up, not just objectively, but subjectively, as well. In 
fact, one might wonder if participants in Group 2 fully 
understood the nature of the sampling process and the re-
sulting probability distributions. In particular, had subjec-
tively expected proportions of red versus green balls been 
more regressive (less extreme) than the correct ones, this 
could account for the results observed quite apart from a 
direct effect of second-order probability.3

To rule out this possibility, we ran a separate experi-
ment. A new group of 22 participants (10 female; mean 
age, 28.7 years) were presented with the same procedure as 
Group 2 concerning urns A100 and C100. Once A*

10 and C*
10 

were formed, participants were asked to indicate the most 
likely sample composition of A*

10 [C*
10] (in terms of the 

number of red/green balls) and the likelihood of drawing a 
red ball from A*

10 [C*
10]. The order of the two questions was 

counterbalanced; for half of the participants we introduced 
A100 first, for the other half, C100. All participants but 2 
(91%) identified “7 red balls and 3 green balls” as the most 
likely composition for A*

10, and all but 2 (91%) identified 
“9 red balls and 1 green ball” as the most likely composi-
tion for C*

10. Moreover, mean and median estimates for a 
red ball being drawn from A*

10 (.684 and .7, respectively) 
as well as from C*

10 (.898 and .9, respectively) were sta-
tistically indistinguishable from the corresponding objec-

Table 2 
Mean and Median Confirmation Judgments Observed 
in Group 3, and Corresponding Tests for Significance of 

Differences With Groups 1 and 2 

Group 3 Group 1 Versus Group 2 Versus
(A100;B100)  Group 3  Group 3

Impact  Mean  Median   t  z   t  z

Positive 3.6 4 0.2 20.2 22.2* 22.3*

Negative 23.3 23 20.4 20.5 2.2* 22.2*

Group 3 Group 1 Versus Group 2 Versus
(C100;D100)  Group 3  Group 3

Mean  Median   t  z   t  z

Positive 7.0 8 1.2 21.3 22.1* 22.1*

Negative 26.2 28 21.5 21.5 1.8* 21.9*

*p , .05, one-tailed.
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is affected by variables extraneous to confirmation, such 
as fear of negative evaluation (Curley, Yates, & Abrams, 
1986). Heath and Tversky (1991) documented further dis-
crepancies between choice and judgment when ambigu-
ity is involved. It remains for further inquiry to clarify the 
psychological relation between ambiguity in choice versus 
second-order probability in confirmation.

One is free to assimilate the violation of (weak) formal-
ity to the list of other complaints about human reasoning 
under uncertainty (see, e.g., Girotto & Gonzalez, 2001; 
Tentori, Bonini, & Osherson, 2004). There is a difference, 
however, between violating coherence constraints when 
estimating probabilities and contradicting a class of con-
firmation measures. In the former case, criticism of human 
reasoning is backed by theorems linking incoherence to 
suboptimal outcomes (e.g., guaranteed worse penalties 
under any proper scoring rule; see Predd et al., 2009). Ar-
guments for or against given confirmation measures, in 
contrast, are typically based on intuition about “clear cases” 
(see, e.g., Eells & Fitelson, 2002). Widespread tendencies 
in “lay” judgment should therefore be taken seriously.

In any event, the focus here is descriptive rather than 
normative. Our results imply that no confirmation mea-
sure among those commonly considered is entirely ac-
curate as a model of human intuition about evidential 
impact, even within a given semantic domain. To model 
the absence of weak formality in confirmation judgment, 
consider the following parametric family of measures, ap-
pearing in Crupi et al. (2007, p. 233):

	
z

z

z
α

α
( , )
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The parameter α may be set to unity when second-order 
probability is maximal and assume higher values as it de-
creases. This scheme yields underrated assessments of 
evidential impact from low second-order probability, thus 
capturing the qualitative phenomenon documented here. 
The precise relation between α and second-order prob-
ability, as well as a quantitative test of the foregoing ac-
count, are topics for further inquiry.

Author Note

K.T. and V.C. acknowledge support from the SMC/Fondazione Cassa 
di Risparmio di Trento e Rovereto for the CIMeC (University of Trento) 
project “Inductive Reasoning.” D.O. acknowledges support from the 
Henry Luce Foundation. We thank Eric-Jan Wagenmakers, Branden 
Fitelson, and an anonymous reviewer for helpful comments on an earlier 
draft. Correspondence concerning this article should be addressed to 
K. Tentori, Department of Cognitive Sciences and Education, Univer-
sity of Trento, Corso Bettini, 31, 38068 Rovereto, Italy (e-mail: katya 
.tentori@unitn.it).

References

Carnap, R. (1962). Logical foundations of probability (2nd ed.). Chi-
cago: University of Chicago Press. (Original work published 1950)

Cheng, P. W. (1997). From covariation to causation: A causal power 
theory. Psychological Review, 104, 367-405.

Crupi, V., Tentori, K., & Gonzalez, M. (2007). On Bayesian theories 
of evidential support: Theoretical and empirical issues. Philosophy of 
Science, 74, 229-252.

Curley, S. P., Yates, J. F., & Abrams, R. A. (1986). Psychological 

Pr(¬E∧H), and Pr(¬E∧¬H). Previous experimentation 
(Tentori, Crupi, & Osherson, 2007) suggests that judg-
ments of evidential impact cannot be modeled by a for-
mal confirmation measure. But this finding leaves open 
the possibility of weak formality—namely, that a formal 
confirmation measure accurately predicts confirmation 
judgments within a given semantic domain (e.g., urns). 
The present investigation, however, appears to close off 
this possibility. Pairs of urn problems were exhibited that 
agree on the four probabilities displayed in (4) but none-
theless generate distinct confirmation judgments. Specifi-
cally, when for each of those quantities a pointwise value 
was fixed with a maximal second-order probability, par-
ticipants rated evidence impact in accordance with nor-
matively credible confirmation measures [namely, l and z 
shown in (2) and (3), respectively]; otherwise, rated impact 
was systematically more moderate. Two control experi-
ments allowed us to exclude potential misunderstandings 
as causes of this effect, by demonstrating that assessments 
of the probabilities in (4) were suitably aligned across the 
two conditions of Experiment 1. As a consequence, the 
results obtained in Experiment 1 appear to document a 
genuine violation of weak formality.

It is well known that ambiguity about probabilities is 
a potent variable in preference among bets (Einhorn & 
Hogarth, 1985, 1986; Ellsberg, 1961), and that a com-
mon procedure for manipulating ambiguity is to vary 
the decision-maker’s confidence in probability estimates 
(Heath & Tversky, 1991). Compared to earlier studies, 
however, the present investigation is different in both 
method and implications.

First, our experimental manipulation is different from 
those employed in studying the effects of ambiguity. In 
particular, ambiguity is typically induced by limiting 
knowledge of the process that generates outcomes, or is 
simulated by hypothetical scenarios. For example, Ells-
berg (1961) presented urns containing unspecified num-
bers of colored balls and did not explain how they were 
obtained. In Hogarth and Kunreuther (1989), as well as 
in Heath and Tversky (1991), participants were directly 
asked to assume they were experiencing “confidence” 
versus “considerable uncertainty” about the probability 
of a hypothetical event. In both procedures, the detailed 
circumstances yielding ambiguity remain unexplained to 
participants (in the latter case, participants did not even 
generate a probability estimate or associated confidence 
on their own). The possibility is thus left open that partici-
pants’ mistrust or ignorance played a role in their reaction 
to the ambiguity. In contrast, our manipulation of second-
order probability did not rely on incomplete information, 
but was instead based on a transparent stochastic process 
under participants’ control.

Second, our experiments document the effect of second-
order probability in a purely cognitive context, inasmuch 
as participants were not asked to choose among uncertain 
prospects; that is, second-order probability was shown 
to affect judgment of evidential impact, which concerns 
change in belief rather than perceived value. The separable 
impact of ambiguity on belief versus choice is suggested 
by previous studies showing that ambiguity aversion in bets 



134        Tentori, Crupi, and Osherson

Kirkpatrick, L. A., & Epstein, S. (1992). Cognitive–experiential 
self-theory and subjective probability: Further evidence for two con-
ceptual systems. Journal of Personality & Social Psychology, 63, 
534-544.

Predd, J., Seiringer, R., Lieb, E. H., Osherson, D., Poor, V., & 
Kulkarni, S. (2009). Probabilistic coherence and proper scoring 
rules. IEEE Transactions on Information Theory, 55, 4786-4792.

Tentori, K., Bonini, N., & Osherson, D. (2004). The conjunction fal-
lacy: A misunderstanding about conjunction? Cognitive Science, 28, 
467-477.

Tentori, K., Crupi, V., Bonini, N., & Osherson, D. (2007). Compari-
son of confirmation measures. Cognition, 103, 107-119.

Tentori, K., Crupi, V., & Osherson, D. (2007). Determinants of con-
firmation. Psychonomic Bulletin & Review, 14, 877-883.

Notes

1. Confirmation measures are in some respects related to the measures 
of strength appearing in psychological studies of causal judgment (e.g., 
Cheng, 1997). See Tentori, Crupi, Bonini, and Osherson (2007) and Fi-
telson and Hitchcock (in press) for discussion.

2. Both measures l and z range between 21 and 11. Notice that, when 
E implies H, Pr(H | E) 5 1 and Pr(E | ¬H) 5 0. On the other hand, when 
E contradicts H, Pr(H | E) 5 Pr(E | H) 5 0. Simple algebra shows that 
l(E,H) 5 z(E,H) 5 11 in the former case, and l(E,H) 5 z(E,H) 5 21 
in the latter.

3. We thank an anonymous reviewer for prompting us to address this 
concern explicitly.

sources of ambiguity avoidance. Organizational Behavior & Human 
Decision Processes, 38, 230-256.

Denes-Raj, V., & Epstein, S. (1994). Conflict between intuitive and ra-
tional processing: When people behave against their better judgment. 
Journal of Personality & Social Psychology, 66, 819-829.

Eells, E., & Fitelson, B. (2002). Symmetries and asymmetries in evi-
dential support. Philosophical Studies, 107, 129-142.

Einhorn, H. J., & Hogarth, R. M. (1985). Ambiguity and uncertainty 
in probabilistic inference. Psychological Review, 92, 433-461.

Einhorn, H. J., & Hogarth, R. M. (1986). Decision under ambiguity. 
Journal of Business, 59, S225-S250.

Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms. Quarterly 
Journal of Economics, 75, 643-699.

Fitelson, B., & Hitchcock, C. (in press). Probabilistic measures of 
causal strength. In F. Russo & J. Williamson (Eds.), Causality in the 
sciences. Oxford: Oxford University Press.

Girotto, V., & Gonzalez, M. (2001). Solving probabilistic and statis-
tical problems: A matter of information structure and question form. 
Cognition, 78, 247-276.

Good, I. J. (1983). Good thinking. Minneapolis: University of Minne-
sota Press.

Heath, C., & Tversky, A. (1991). Preference and beliefs: Ambiguity 
and the competence in choice under uncertainty. Journal of Risk & 
Uncertainty, 4, 5-28.

Hogarth, R. M., & Kunreuther, H. C. (1989). Risk, ambiguity, and 
insurance. Journal of Risk & Uncertainty, 2, 5-35.

Kemeny, J. G., & Oppenheim, P. (1952). Degrees of factual support. 
Philosophy of Science, 19, 307-324.

Appendix

Participants in Group 2 were required to sample n 5 10 balls without replacement from a population of 
N 5 100 balls, of which R are red and N–R are green. In this set up, the discrete probability distribution over the 
number r of red balls in sample n is the hypergeometric distribution, whereby the expected value of r amounts 
to R × (n/N ).

As a consequence, probabilities of a red ball being drawn from A*
10, B*

10, C*
10, and D*

10 are, respectively, as 
follows:

	 Pr(red | A*
10) 5 [70 3 (10/100)] / 10 5 .7	

	 Pr(red | B*
10) 5 [30 3 (10/100)] / 10 5 .3	

	 Pr(red | C*
10) 5 [90 3 (10/100)] / 10 5 .9	

	 Pr(red | D*
10) 5 [10 3 (10/100)] / 10 5 .1	

Thus:

	 Pr(red∧A*
10) 5 Pr(red | A*

10) 3 Pr(A*
10) 5 .7 × .5 5 .35	

	 Pr(red∧B*
10) 5 Pr(red | B*

10) 3 Pr(B*
10) 5 .3 × .5 5 .15	

	 Pr(red∧C*
10) 5 Pr(red | C*

10) 3 Pr(C*
10) 5 .9 × .5 5 .45	

	 Pr(red∧D*
10) 5 Pr(red | D*

10) 3 Pr(D*
10) 5 .1 × .5 5 .05	
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