
Many human activities rely on people’s ability to elabo-
rate relevant inferences from limited information avail-
able. Most of these inferences are instances of inductive 
reasoning, meaning that the conclusions involved do not 
necessarily follow from given evidence or previously 
available background knowledge. Such conclusions may 
concern the future, as in the prediction of expected clini-
cal manifestations of an ongoing infection, or the past, as 
in the diagnosis, based on currently observed symptoms, 
of a formerly contracted infection (Sloman & Lagnado, 
2005). Inductive reasoning is also crucial for almost any 
learning activity, such as those related to word meanings, 
causal relationships, and many other aspects of the world 
(Tenenbaum, Griffiths, & Kemp, 2006). Accordingly, in-
ductive reasoning is seen as an essential element in human 
intelligence (Tomic & Kingma, 1998), as well as in one 
of its highest achievements, scientific knowledge (Baron, 
2008; Howson & Urbach, 2006).

However, current understanding of the cognitive pro-
cesses involved in inductive reasoning is still limited, and 
a remarkable number of issues remain open. Among these, 
the uncertainty of evidence available for inductive reason-
ing will be the issue explored in the present contribution. 
Indeed, despite the fact that evidence in real life is often 
uncertain, the study of inductive reasoning has so far been 
confined to certain evidence.

Uncertainty is widely recognized as a ubiquitous chal-
lenge for human cognition and theories thereof (see, e.g., 
Hastie & Dawes, 2001; Jeffrey, 1992; Oaksford & Chater, 
2007). Nonetheless, major theoretical accounts of in-
ductive reasoning typically assume some evidence to be 
known with certainty and to play a crucial role. Bayesian-
ism is no exception, at least in its textbook versions (Hart-
mann, 2008): A Bayesian agent is supposed to evaluate 
hypotheses by probabilistically conditionalizing on data 
that are acquired as certain.

Psychological research on inductive reasoning has also 
largely focused on ascertained evidence. For instance, from 
seminal inquiries up to more recent developments, the cat-
egorical induction paradigm presents participants with the 
consideration of a hypothesis/conclusion (e.g., “birds have 
an ulnar artery”) as possibly supported by an allegedly 
known fact given as a premise (e.g., “robins have an ulnar 
artery”) (see, e.g., Blok, Medin, & Osherson, 2007; Blok, 
Osherson, & Medin, 2007; Heit, 1998; Kemp & Tenen-
baum, 2009; Medin, Coley, Storms, & Hayes, 2003; Osh-
erson, Smith, Wilkie, López, & Shafir, 1990).

As useful as it may be for epistemological analysis, 
the assumption that evidence is certain amounts to a 
rather crude simplification in psychological terms; it is 
rarely met in real settings. In a murder trial, for instance, 
the defendant’s presence at the scene of the crime may 
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prior probability Pt(h) to a new value Pt11(h), which is not 
identical to the conditional Pt(h | e) but, rather, lies between 
the latter and Pt(h | not-e).

From a theoretical standpoint, Jeffrey’s generalized rule 
of conditionalization is both elegant and plausible. Indeed, 
in virtue of the theorem of total probabilities, this updating 
rule turns out to be mandatory through mere probabilistic 
coherence once it is assumed that Pt(h | e) 5 Pt11(h | e) and 
Pt(h | not-e) 5 Pt11(h | not-e)—a condition called rigid-
ity (Jeffrey, 1965, chap. 11) or invariance (Jeffrey, 2004, 
p. 52; for a discussion of the rigidity condition in psychol-
ogy, see Oaksford & Chater, 2007, pp. 113ff).

Concerns have been recurrently raised that the Jeffrey 
conditionalization lacks a form of commutativity, sug-
gesting dependence on the mere order of occurrence of 
allegedly identical episodes of uncertain learning from 
experience (for a discussion, see Lange, 2000). This worry 
has been more recently dispelled, however, by Wagner’s 
(2002) proof that, once “identical learning” is appro-
priately formalized, Jeffrey’s rule does commute across 
order.

Along with Jeffrey’s, another influential treatment of 
probability updating on uncertain evidence was devised 
by Pearl (1988). Labeled the method of virtual evidence, 
it exploits the powerful formalism of Bayesian networks. 
It is worth noting, thus, that Chan and Darwiche (2005) 
provided mathematical results to the effect that one can 
neatly translate any of Jeffrey’s and Pearl’s machinery into 
the other.

From Conditionalization to  
Inductive Confirmation

As explained in the previous section, Jeffrey’s rule of 
conditionalization provides an answer to the question, 
How can the probability of a hypothesis h be updated in 
light of uncertain evidence e? That is, How can Pt11(h) 
be computed from Pt when 0 , Pt11(e) , 1? Posterior 
probability is, of course, a crucial notion in the study of 
inductive reasoning, but it does not exhaust the topic. In 
particular, within a probabilistic analysis of inductive rea-
soning, there is a major conceptual difference between 
posterior probability and inductive confirmation (see, 
e.g., Carnap, 1950/1962; Fitelson, 1999). Indeed, as a 
matter of logical analysis, one can convincingly argue 
that confirmation is the very core notion in the study of 
induction (for a neat statement, see Fitelson, 2006). Un-
fortunately, with a few notable exceptions (e.g., Sides, 
Osherson, Bonini, & Viale, 2002), a clear distinction be-
tween posterior probability and confirmation is seldom 
spelled out in psychological investigations of human in-
ductive reasoning. It should be emphasized, however, that 
the notion of inductive confirmation often lies behind 
psychological treatments of the “inductive strength” of 
arguments, a much more familiar label in the empirical 
study of reasoning (for a clear example of the connection, 
see Rips, 2001; see especially note 1).

Inductive confirmation is a relative notion in a very cru-
cial sense: The credibility of a hypothesis can be changed 
in either a positive (confirmation in a narrow sense) or 
negative (disconfirmation) way by a given piece of evi-

be highly relevant for the hypothesis of guilt, but it can 
hardly be completely ascertained in a court of law. At 
best, a DNA test or reliable testimony can make this el-
ement of evidence very probable. Indeed, in a variety 
of real-life situations, people need to assess the impact 
of a piece of evidence without its probability reaching 
extreme values.

Now that considerable amounts of data and theoriz-
ing have been accumulated on inductive reasoning from 
certain evidence, it seems of interest to extend empiri-
cal investigation beyond the limits of this framework, in 
order to address how uncertain evidence is employed in 
hypothesis evaluation. In what follows, we present two 
experiments concerning assessments of the inductive im-
pact of uncertain evidence. More precisely, we investigate 
how inductive confirmation (sometimes also called induc-
tive strength) is assessed when evidence is uncertain. It 
will be seen shortly how confirmation judgments relate 
to and differ from estimates of posterior probability. In 
order to settle the appropriate normative benchmark for 
the experimental tasks employed, we will need to illustrate 
the relevant theoretical framework that extends the basic 
Bayesian account to the uncertain evidence case.

Jeffrey’s Rule of Conditionalization
Consider a pair of complementary hypotheses of in-

terest, h and not-h (extending the following treatment to 
any richer partition is straightforward). In the Bayesian 
framework, it is assumed that, at a given time t, the belief 
state of an agent is represented by a probability function Pt 
defined over h and not-h. It may occur that, from time t to 
t11, the agent experiences a change in opinion concern-
ing a further statement e, provided that Pt(e) is not extreme 
to begin with—that is, 0 , Pt(e) , 1. One important ques-
tion is, then, how should the agent’s beliefs in h and not-h 
change as a consequence?

Up to the 1960s, Bayesians had a ready answer only for 
the special case in which, at time t11, the agent has come 
to believe that e is certainly true, so that Pt11(e) 5 1, and, 
correspondingly, Pt11(not-e) 5 0. “Classical” or “strict” 
Bayesian conditionalization postulates that

 if Pt11(e) 5 1, then Pt11(h) 5 Pt(h | e). (1)

However, it may surely also occur that the agent’s degree 
of belief in e changes from time t to t11 without reach-
ing certainty. What would the value of Pt11(h) be then? 
Jeffrey (1965, chap. 11) suggested a natural way to gen-
eralize classical Bayesian conditionalization (see also Jef-
frey, 2004, pp. 53–55). In Jeffrey conditionalization, it is 
assumed that

 Pt11(h) 5 Pt(h | e)Pt11(e) 1 Pt(h | not-e)Pt11(not-e). (2)

Thus, Pt11(h) is computed as an average of the “old” con-
ditional probabilities of h on e versus not-e, weighted by 
the current probabilities of e and not-e, respectively.

It is easy to see that Jeffrey conditionalization is a proper 
generalization of the classical Bayesian account. In fact, 
when e does become certainly true, so that Pt11(e) 5 1, 
Equation 2 immediately reduces to Equation 1. In all other 
cases, a change in belief about e prompts updating of the 
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& Gonzalez, 2007; Festa, 1999; and Fitelson, 1999). As 
shown by Crupi, Festa, and Mastropasqua (2008), more-
over, major confirmation measures can be defined in a 
completely general fashion—that is, not depending on the 
particular rule of conditionalization leading from Pt(h) to 
Pt11(h). In this way, they can be readily applied when the 
credibility of hypothesis h is affected by a change in the 
probability of some relevant piece of evidence e that does 
not attain certainty. In what follows, we focus on the fol-
lowing measures of inductive confirmation. For brevity of 
notation, O denotes odds, so that Ot(h) 5 Pt(h)/Pt( not-h) 
and Ot11(h) 5 Pt11(h)/Pt11(not-h).
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Measure L is strictly connected with the log likelihood 
ratio measure first conceived by Alan Turing (as reported 
by Good, 1950, pp. 62–63; see also Fitelson, 2001; Kem-
eny & Oppenheim, 1952).1 Measure Z has been recently 
advocated by Crupi et al. (2007); other occurrences in-
clude Rescher (1958, p. 87) and Shortliffe and Buchanan 
(1975) (see also Mura, 2006, 2008).

Although nonequivalent in general terms, measures L 
and Z share a number of properties that single them out 
as being particularly appealing as normative models (see 
Crupi et al., 2007; Eells & Fitelson, 2002; Fitelson, 2006). 
Among other things, each of measures L and Z achieves a 
fixed finite maximum (minimum) value 11 (21) in the 
limiting case of an ascertained piece of evidence e imply-
ing (contradicting) h, thus matching in a natural way the 
bounded, bidirectional, and symmetric rating scale em-
ployed in our experiments.

Previous research has shown that, with some piece of cer-
tain evidence having been acquired, intuitive assessments 
of inductive confirmation can be elicited directly, because 
people prove able to appropriately distinguish between 
posteriors and degrees of confirmation (Tentori, Crupi, 
Bonini, & Osherson, 2007). It has also been observed that 
intuitive confirmation judgments based on ascertained 
evidence tend to conform to normatively appealing mod-
els, such as L and Z above (Crupi et al., 2007). The main 
goal of our inquiry is to investigate whether such conclu-
sions can be extended to scenarios involving judgments 
of confirmation by uncertain evidence. The experiments 
below test the understanding of confirmation in human 
judgment—as distinct from posterior  probability—in the 
extended and virtually unexplored domain of inductive 
reasoning with uncertain evidence.

EXPERIMENT 1

Experiment 1 was conceived as a first test of the de-
scriptive adequacy of measures L and Z relative to judg-
ments of confirmation by uncertain evidence. The degree 

dence. Confirmation (in the narrow sense) thus reflects 
an increase from prior to posterior probability, whereas 
disconfirmation reflects a decrease. As a consequence, 
the degree of confirmation is not the same as the posterior 
probability. To illustrate, the probability of an otherwise 
very rare disease (h) can be quite low even after a relevant 
positive test result (e); yet h is inductively confirmed by 
e to the extent that its probability has risen. By the same 
token, the probability of the absence of the disease ( not-h) 
can be quite high despite the positive test result (e), yet 
not-h is disconfirmed by e to the extent that its probability 
has decreased. Confirmation concerns the relationship be-
tween prior and posterior probability, so there is simply no 
single probability value that can capture the notion, much 
as the heating (or cooling) of an environment cannot be 
represented by any single temperature.

Although seldom highlighted or analyzed under this 
heading, assessments of confirmation relations are argu-
ably common in daily life, as well as in expert practices. 
Consider the following example. A father is suspected of 
abusing his son. The child does claim he has been abused. 
The forensic psychiatrist, when consulted, upholds that 
this is evidence for guilt. But now suppose that the child is 
asked and does not report having been abused. As noticed 
by Dawes (2001), it may well happen that the forensic psy-
chiatrist nonetheless interprets this as evidence for guilt 
(suggesting that violence prompted the removal). Of course, 
the two judgments seem inconsistent and thus untenable on 
a purely logical basis. The reason lies in the following en-
tirely general and compelling principle: e is evidence for h 
if and only if (iff) not-e is evidence against h.

Can the latter principle be captured by considering 
posterior probabilities alone? The answer is no. This is 
because, mathematically, there is no fixed relationship 
constraining the values of P(h | e) and P(h | not-e); they 
can both be high, for instance, or both low. On the con-
trary, the notion of confirmation/disconfirmation as an 
increase/ decrease in probability does yield the desired 
principle as a matter of course, for, demonstrably, e con-
firms h iff not-e disconfirms h—that is, P(h | e) . P(h) iff 
P(h |  not-e) , P(h). As a consequence, the hypothetical 
judgments of the forensic psychiatrist mentioned above 
can only be sensibly understood and logically criticized as 
distinctively representing judgments of confirmation.

Confirmation by Uncertain Evidence
A natural way to measure inductive confirmation 

amounts to positing a function ct, t11(h) mapping a rel-
evant set of probability values from Pt and Pt11 onto a 
number that is positive, null, or negative, depending on 
the posterior of h being higher, equal to, or lower than its 
prior—that is,
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Various alternative measures of confirmation that 
satisfy this basic constraint have been proposed and de-
fended (see Crupi, Festa, & Buttasi, 2010; Crupi, Tentori, 
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INFORMATION (surely true):
the drawn student is
male with 80% probability
female with 20% probability
–––––––––––––––––––––––––––––––––
HYPOTHESIS (can be true or false):
the drawn student
owns a €10,000 motorbike

Let us briefly illustrate the connection between the above ex-
ample and the theoretical framework presented in the introductory 
section. Assuming that, in the reasoner’s view, the drawn student is 
more likely to own a €10,000 motorbike if male than otherwise—
that is, that Pt (motorbike | male) . Pt (motorbike)—the above ar-
gument displays a case of positive confirmatory impact from un-
certain evidence concerning gender. In fact, by the information 
given, the probability of a piece of evidence (male) strictly confirm-
ing the hypothesis (motorbike) has risen from its baseline value 
Pt (male) 5 .5 to Pt 11(male) 5 .8, so that, by Jeffrey’s rule (Equa-
tion 2), Pt 11(motorbike) . Pt (motorbike). In turn, by Equations 3 
and 4, a positive value obtains as a degree of confirmation (the nu-
merators of both measures L and Z are positive). Notably, this all 
occurs despite the posterior Pt 11(motorbike) presumably remaining 
low or moderate.

The participants were asked to estimate inductive confirmation 
concerning the four arguments presented. They were instructed to 
drag each argument icon onto an “impact scale,” thus assigning it 
a value. The scale (see Figure 1) had two opposite directions, cor-
responding to positive and negative impact, respectively, as well as a 
neutral point in the middle, corresponding to no impact.

The participants were instructed to place the argument icon as 
much to the right (left) as they judged the information given about 
the uncertainty of evidence to increase (decrease) the plausibility of 
the hypothesis. Once they expressed their judgments, a novel double 
sampling was said to have been performed, and the participants were 
asked to evaluate another set of inductive arguments, and so on for 
all seven sets. Table 1 displays a full description of the seven levels 
of uncertain evidence and the four hypotheses that appeared in the 
inductive arguments employed.

From the findings of pilot studies, we expected the four chosen 
hypotheses to elicit quantitatively different judgments on both the 
positive and negative sides of the impact scale. Also, the chosen 
hypotheses were expected to span from low to moderate priors (i.e., 
perceived frequencies of the predicates in the overall population 
group). We preferred not to employ hypotheses with very high priors 
because they would have hindered significantly unbalanced distribu-
tions in the male versus female subgroups.

On the whole, we collected 28 confirmation judgments for each 
participant (seven sets 3 four hypotheses). The concurrent evalua-
tion of four arguments fostered relevant comparisons and appropri-
ate use of the quantitative scale.

Probability task. After the confirmation task, participants were 
asked to consider again a group of 1,000 students—500 males and 
500 females—and answer questions like the following, for each hy-
pothesis. How many male students out of 500 own a €10,000 mo-
torbike? How many male students out of 500 do not own a €10,000 
motorbike? How many female students out of 500 own a €10,000 

of uncertainty of evidence was manipulated by a purposely 
devised sampling procedure.

Method
Thirty-three students (17 female, mean age 5 25 years) from the 

University of Trento participated in Experiment 1 in exchange for 
course credit.

The participants performed two tasks: a confirmation task first, 
then a probability task.2 A custom Java application was used for 
stimulus presentation and to collect participants’ responses.

Confirmation task. The participants were presented seven sets 
of four inductive arguments each. The four arguments in a set each 
involved an identical piece of evidence and a different hypothesis. 
The probability of evidence varied across the seven sets (seven lev-
els, one for each set, ranging between 100% and 0%; see Table 1) 
and was manipulated by means of the following scenario:3

Consider a group of 1,000 students, 500 males and 500 fe-
males, randomly selected at the University of Trento. For the 
sake of convenience, these 1,000 students have been ordered 
alphabetically by their surname, from A to Z. Starting from 
the beginning of the alphabetical list, separation lines have 
been entered after each set of 10 students, as shown below. 
[The relevant graphical display was provided.] In this way, the 
1,000 students have been divided into 100 groups, each formed 
by 10 students. In what follows we will repeatedly draw at 
random 1 among the 100 groups of students, then again 1 at 
random among the 10 students in that group. Draws will be in-
dependent at each trial (so, in principle, the same student might 
be selected more than once).

The gender of the drawn student represented the relevant evi-
dence, and the double sampling procedure (i.e., first drawing a 
group, then a student from that group) provided a plausible way to 
manipulate probability. For example, participants concurred that a 
student drawn from a group of 8 males and 2 females had a .8 prob-
ability of being male versus a .2 probability of being female.

After the student was said to have been drawn, participants were 
presented a set of four inductive arguments, each involving the same 
information about the probability of the student being male versus 
female, coupled with one among four different hypotheses. An ex-
ample of an argument as displayed in the experiment is shown in the 
following text:

Table 1 
The Seven Levels of Uncertain Evidence and Four Hypotheses 

Appearing in the Inductive Arguments Employed

Information About Uncertain Evidence
The drawn student is
male with probability [100%; 80%; 70%; 50%; 30%; 20%; 0%].
female with probability [0%; 20%; 30%; 50%; 70%; 80%; 100%].

Hypotheses
The drawn student
[owns a €10,000 motorbike; owns a €10,000 necklace; usually has a
shaved beard; usually applies eye makeup].

The information
makes the hypothesis

surely FALSE

The information
makes the hypothesis

surely TRUEThe information DECREASES
the plausibility of the hypothesis

The information INCREASES
the plausibility of the hypothesis

0

The information 
NEITHER INCREASES
NOR DECREASES the

plausibility of the hypothesis

Figure 1. The impact scale used for confirmation judgments.
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Let us now turn to the results from the confirmation 
task. Mean judgments across participants are displayed in 
Table 3. As read across the rows, these data conform to a 
basic feature of confirmation by uncertain evidence—that 
is, increasing (decreasing) amounts of confirmation for a 
fixed h as the new probability of a piece of confirming 
(disconfirming) evidence increases (for a formal analysis, 
see Crupi, Festa, & Mastropasqua, 2008). As read down 
the columns, moreover, the data also show that, for each 
fixed level of evidence uncertainty—excluding the spe-
cial case Pt(e) 5 Pt11(e) 5 .5 (see the discussion below)— 
confirmation judgments are spread over the impact scale 
in both the positive and negative directions. The latter 
point is of particular interest because it clearly shows that 
our results cannot be accounted for by merely considering 
the direction and extent of the departure of Pt11(e) from 
Pt(e) 5 .5; otherwise, absolute values would be identical 
across all entries within each column in Table 3. Confir-
mation measures L and Z, on the contrary, do capture the 
observed pattern. In fact, both measures rank arguments 
along the columns precisely as displayed in Table 3, once 
average probabilities from Table 2 are plugged into Equa-
tions 5A and 5B and confirmation values are subsequently 
computed from Equations 4A and 4B. On the whole, these 
remarks are an indication that observed quantitative judg-
ments were sensitive to three basic and distinctive aspects 
that are all integrated in the Bayesian account of confir-
mation by uncertain evidence—namely, (1) the specific 
hypothesis h concerned (as identified, most notably, by its 
prior), (2) the positive versus negative connection between 
e and h, and (3) the degree of uncertainty of e.

As for the special case in which Pt11(e) 5 .5, a dis-
tinctive implication of Bayesian confirmation theory, as 
extended to uncertain evidence, is that a null degree of 
confirmation applies for all four arguments. Indeed, be-
cause Pt11(e) 5 .5 5 Pt(e), nothing new is actually learned 
concerning the evidence from t to t11. As a consequence, 
one can easily verify that Pt11(h) 5 Pt(h), whatever their 
specific values may be (see Equations 5A and 5B). In this 

motorbike? How many female students out of 500 do not own a 
€10,000 motorbike?

Complementary estimates were asked for in order to foster ac-
curacy. The participants could begin from whichever estimate they 
preferred. The software required each pair of complementary esti-
mates to sum up to 500.

Results and Discussion
Following the notation used in the introductory sec-

tion, h represents a hypothesis, corresponding to one of 
those shown in Table 1; subscripts t and t11 indicate, 
respectively, the initial and subsequent degrees of belief 
concerning the statement “The drawn student is male [fe-
male],” which is denoted by e [not-e].

In order to test relevant theoretical predictions against 
collected judgments, quantities Pt(h) and Pt11(h) were cal-
culated for each of the 28 arguments presented and for each 
participant by means of the theorem of total probability and 
Jeffrey’s conditionalization rule, respectively—that is,

 Pt(h) 5 Pt(h | e)Pt(e) 1 Pt(h | not-e)Pt(not-e)

 [theorem of total probabilities] (5A)

and

 Pt11(h) 5 Pt(h | e)Pt11(e)1 Pt(h | not-e)Pt11(not-e)

 [Jeffrey conditionalization]. (5B)

Notice that all of the values in Equations 5A and 5B 
were available. The experimental procedure fixed Pt(e) 
and Pt11(e). In particular, the initial probability that the 
drawn student was male, Pt(e), was set at .5, because the 
participants were informed at the beginning that the over-
all group of 1,000 students was formed by equal num-
bers of males and females. Pt11(e) was then provided by 
the additional information contained in each argument as 
amounting to one of the seven levels of evidence uncer-
tainty reported in Table 1. Values Pt(h | e) and Pt(h | not-e), 
on the other hand, emerged from the estimates that each 
participant expressed while performing the probability 
task and were simply obtained through division by 500 of 
the estimate given in response to the question about the 
numbers of male and female students (out of 500) satis-
fying hypothesis h (e.g., owning a €10,000 motorbike).

The results from the probability task, partially serving 
as a manipulation check for the selection of the predi-
cates employed, are given below. Table 2 displays mean 
probability values obtained from participants’ responses. 
Associations between gender and predicates, as well as 
overall perceived frequencies of the latter, were broadly 
in line with prior expectations guiding the construction of 
experimental materials.

Table 2 
Average Values From the Probability Task  

in Experiment 1 (n 5 33)

h  Pt(h | e)  Pt(h | not-e)  Pt(h)

usually applies eye makeup .04 .85 .44
owns a €10,000 necklace .04 .15 .09
owns a €10,000 motorbike .19 .04 .12
usually has a shaved beard .88 .01 .44

Note—Statement “The drawn student is male [female]” is denoted by 
e [not-e].

Table 3 
Average Values From the Confirmation Task in Experiment 1 (n 5 33)

h  Pt11(e) 5 1  Pt11(e) 5 .8  Pt11(e) 5 .7  Pt11(e) 5 .5  Pt11(e) 5 .3  Pt11(e) 5 .2  Pt11(e) 5 0

usually applies eye makeup 2.84 2.61 2.49 .01 .50 .56 .79
owns a €10,000 necklace 2.55 2.42 2.34 .00 .31 .36 .42
owns a €10,000 motorbike .46 .35 .25 .00 2.37 2.38 2.55
usually has a shaved beard .90 .66 .51 .02 2.56 2.65 2.97

Note—Statement “The drawn student is male” is denoted by e.
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For each of the remaining 31 participants, Pearson4 cor-
relations were computed between the 28 Judgedt, t11(h) 
and the corresponding 28 Lt, t11(h), Zt, t11(h), and poste-
rior probabilities arising from Jeffrey conditionalization. 
Average correlations across participants are shown in 
Table 4.

If participants’ judgments did not appropriately reflect 
the distinction between confirmation and posterior, then 
the average correlation from posterior probability would 
have been close to 1. It can be seen that, on the contrary, 
posterior probability produced the lowest average correla-
tion. Indeed, paired t tests revealed that average correla-
tions yielded by L and Z were both reliably greater than 
that computed by posterior probability ( p , .01). Thus, 
participants in our experiment were apparently able to 
assess confirmation as distinct from posterior probabil-
ity. Furthermore, the high average correlations with both 
L and Z indicate that participants’ confirmation judgments 
were normatively sound—that is, close to those implied 
by credible theoretical models, with a small but signifi-
cant higher predictive accuracy of L than of Z ( p , .01, 
by paired t test).

We also carried out the same quantitative analyses on a 
more detailed level by identifying three subsets of judg-
ments. The first subset amounted to the limiting cases 
of evidence uncertainty as defined above—that is, with 
Pt11(e) equal to either 100% or 0%. The second and third 
subsets were two classes of cases of strict evidence un-
certainty: Pt11(e) equal to either 80% or 20% and Pt11(e) 
equal to either 70% or 30%. The results closely matched 
those from the general analysis reported above. Average 
correlations with each of the measures L and Z were sta-
tistically indistinguishable across all three subsets. Within 
each subset, both L and Z were consistently superior pre-
dictors, as compared with posterior probability ( p , .01, 
by paired t tests), with L being consistently more accurate 
than Z ( p , .05, by paired t test).

EXPERIMENT 2

Experiment 1 employed inductive arguments in which 
the probability of evidence was explicitly provided (e.g., 
“The drawn student is male with 80% probability, female 
with 20% probability”). Results show that the partici-
pants’ judgments largely conformed to plausible norma-
tive models. However, in most inductive arguments from 
real life, people have to deal with uncertain evidence while 
not being given any numerical measure of belief by some 

experiment, a “0” confirmation judgment was reported in 
94% of the relevant cases (124 out of 4 3 33 5 132), with 
an overall mean departure from 0 (i.e., algebraic differ-
ence in absolute value) amounting to .01.

More generally, if confirmation by uncertain evidence 
is appropriately assessed, individual confirmation judg-
ments expressed by participants—hereafter denoted by 
Judgedt, t11(h)—should match the basic condition dis-
played for ct, t11(h) in the introductory section (see Equa-
tion 3). It should, therefore, be the case that
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We thus checked whether the basic normative con-
straint in Equation 6 was indeed satisfied at the indi-
vidual level. Overall, only 17 among (28 3 33) 5 924 
Judgedt, t11(h)—that is, 1.8%—violated Equation 6. We 
also carried out the same analysis after splitting the con-
firmation judgments into two subsets consisting of limit-
ing cases of evidence uncertainty versus cases of strict 
evidence uncertainty, respectively. The former subset in-
cludes (8 3 33) 5 264 judgments with Pt11(e) amount-
ing to either 100% or 0% (indicating that either e or not-e 
was, in fact, certain evidence at t11). The latter subset 
includes all of the (20 3 33) 5 660 other judgments, 
with Pt11(e) amounting to intermediate values between 
80% and 20% (see Table 1). In both subsets, the propor-
tion of violations of Equation 6 was negligible (0.4% 
in limiting cases and 2.4% under strict uncertainty). 
Thus, intuitive confirmation judgments elicited in Ex-
periment 1 largely reflect the theoretical distinction of 
positive, null, and negative impact, even when evidence 
is strictly uncertain.

A further kind of analysis was aimed at measuring the 
degree of association between participants’ confirmation 
judgments and the corresponding quantitative degrees 
of confirmation, as predicted by measures L and Z. In 
line with the notation introduced earlier, let us denote 
any confirmation judgment as predicted by L and Z as 
Lt, t11(h) and Zt, t11(h), respectively. For each participant, 
we first computed the 28 Lt, t11(h) and Zt, t11(h) values by 
directly substituting Pt(h) and Pt11(h) into the relevant ex-
pressions (see Equations 4A and 4B). For 2 participants, 
some Lt, t11(h) turned out to be undefined because Pt(h) 
and Pt11(h) were zero for some hypotheses h (division by 
zero) and were thus excluded from the present analysis. 

Table 4 
Average Pearson Correlations Between Judged Confirmation and 

Confirmation Predicted by L and Z, and Between Judged Confirmation and 
Posterior Probability Computed by Jeffrey Conditionalization

Posterior 
Predicted Predicted Probability (Jeffrey

  Confirmation (L)  Confirmation (Z )  Conditionalization)

Judged confirmation .913* .903* .662

Note—Each value is the average of 31 Pearson correlations (1 per participant) involving 
28 observations. *Reliably greater than the average correlation for posterior probability 
at p , .01 by paired t test.
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very carefully and in detail. The picture then automatically reduced 
in size (but could still be widened just by clicking on it), and the par-
ticipants were asked to answer the following questions: (1) In light of 
the picture, do you think the drawn student is male or female? [Par-
ticipants had to choose one option: male vs. female.] (2) What is the 
probability that your previous answer is correct? [Participants had 
to place the cursor on a sliding bar ranging from 50% to 100%.]

The responses to the questions above provided an estimate of 
participants’ perceived degrees of uncertainty about the evidence 
concerning gender. Afterward, a set of four inductive arguments was 
presented, while a reminder in the top right corner of the screen 
reported the degree of uncertainty previously assigned to the evi-
dence. As in Experiment 1, the participants had to estimate induc-
tive confirmation. The hypotheses, as well as the scale employed 
and the rest of the procedure, were the same as in Experiment 1. 
An example of inductive argument as displayed in Experiment 2 
appears in Figure 2.

Probability task. The probability task was exactly the same as in 
Experiment 1.

Results and Discussion
As Table 5 shows, the results from the probability task in 

Experiment 2 largely reproduce those in Experiment 1.
With regard to the confirmation task, notice that, unlike 

in Experiment 1, no analysis of mean values across partic-
ipants is appropriate here. This is because different levels 
of evidential uncertainty were not uniformly provided in 
the procedure, but rather were individually judged on the 
basis of the interpretation of pictures.

Only 7 participants in Experiment 2 assigned 
Pt11(e) 5 .5 as reflecting their assessment of some of 
the pictures of hands they were being shown. As a con-
sequence, only 48 arguments required a null degree of 
confirmation as implied by Pt(e) 5 Pt11(e). Thirty-eight 
of these arguments (79%) actually elicited “0” responses, 
with a mean departure from 0 (i.e., algebraic difference 
in absolute value) amounting to .09. It should be noted, 
moreover, that 1 participant accounted for half of the 10 
normatively inconsistent judgments. If this single partici-
pant is left out of this analysis, the proportion of appropri-
ate “0” responses rises to 87.5%, with a mean departure 
from 0 of just .01.

On the whole, (28 3 34) 5 952 Judgedt, t11(h) were col-
lected in Experiment 2. Sixty-three of them (6.6%) violated 
Equation 6 above (i.e., the basic normative distinction of 
positive, null, and negative impact). Based on the partici-
pants’ own interpretations of the pictures displayed, limit-
ing cases of evidence uncertainty (i.e., with Judged Pt11(e) 
amounting to either 100% or 0%) were a small minority, 
namely 56 (5.9%) judgments out of 952. The proportions 

external source. As a test of generality, in Experiment 2 
the uncertainty of evidence was manipulated indirectly by 
means of ambiguous pictures.

Method
Thirty-four students (15 female, mean age 5 26 years) from the 

University of Trento participated in Experiment 2 in exchange for 
course credit. None had participated in Experiment 1. As in Experi-
ment 1, the participants performed a confirmation task followed by 
a probability task presented via a custom Java application.

Confirmation task. The confirmation task was basically the 
same as that in Experiment 1, but it differed in the way in which evi-
dential uncertainty was manipulated. In Experiment 2, participants 
were presented the following scenario:

Consider a group of 1,000 students, 500 males and 500 fe-
males, randomly selected at the University of Trento. In what 
follows, we will repeatedly draw at random one among the 
1,000 students, and we will show you a picture of her/his hand. 
Draws will be independent at each trial (so, in principle, the 
same student might be selected more than once).

As can be seen, no double sampling procedure was involved in 
this scenario. The student was said to have been directly drawn from 
the larger sample of 1,000. The uncertainty of evidence concerning 
the student’s gender was implicitly manipulated via the picture of 
her/his hand. We selected pictures displaying more or less relevant 
cues to gender, according to the findings of a pilot study, thus deter-
mining more or less extreme departures of the probability of being 
male/female from the initial base-rate level of .5. Pictures were also 
selected as not displaying cues that could possibly count as relevant 
direct evidence for any of the hypotheses (i.e., independent of gen-
der). For example, the hands chosen and pictured exhibited no rings, 
tattoos, or nail enamel. (See the Results and Discussion section for 
further discussion of this point.)

At each trial, an enlarged picture of the hand appeared on the 
screen for 10 sec, and the participants were prompted to look at it 

INFORMATION (surely true):
This is the drawn student’s hand.

HYPOTHESIS (can be true or false):
the drawn student

owns a €10,000 motorbike.

Figure 2. Sample stimulus from Experiment 2.

Table 5 
Average Values From the Probability Task  

in Experiment 2 (n 5 34)

h  Pt(h | e)  Pt(h | not-e)  Pt(h)

usually applies eye makeup .01 .84 .43
owns a €10,000 necklace .03 .10 .07
owns a €10,000 motorbike .16 .07 .11
usually has a shaved beard .88 .003 .44

Note—Statement “The drawn student is male [female]” is denoted by 
e [not-e].



948    Mastropasqua, Crupi, and tentori

tified in the notion of evidence prompting a change in 
 belief—namely, confirmation—as distinct from final 
belief per se. In the philosophy of science and in epis-
temology, the debate on the issue has been lasting (see, 
e.g., Earman, 1992; Fitelson, 1999). In the psychological 
literature, on the other hand, Bayesian confirmation has 
occurred sparsely and indirectly, often by different names. 
It has been invoked, for instance, in discussions concern-
ing the reality of the “conjunction fallacy” (see Crupi, 
Fitelson, & Tentori, 2008; Sides et al., 2002) and related 
phenomena (see Lagnado & Shanks, 2002), as well as in 
inquiries into various aspects of the perception of chance 
(e.g., Tenenbaum & Griffiths, 2001). A specific principle 
of confirmation theory has been experimentally studied 
by Lo, Sides, Rozelle, and Osherson (2002) and found 
to be largely adhered to in children’s reasoning. Bayesian 
confirmation also yields formal and conceptual connec-
tions with models of the value of information (Nelson, 
2005) involved in a number of established research areas 
in psychology, such as Wason’s selection task (see Fitel-
son, 2010; Klayman & Ha, 1987; McKenzie & Mikkelsen, 
2000; Nickerson, 1996; Oaksford & Chater, 1994, 2003).

The experiments reported here extend recent studies 
explicitly devoted to the psychology of confirmation 
(Crupi et al., 2007; Tentori et al., 2007; Tentori, Crupi, 
& Osherson, 2010). Tentori et al. (2007), in particular, 
employed an urn setting with sequential draws, where 
relevant evidence (the color of drawn balls) was certain 
(indeed, was established by the participants themselves by 
direct observation). In Tentori et al. (2007), intuitive judg-
ments of confirmation reflected to a remarkable extent the 
formal notion as represented by normatively appealing 
accounts, such as measures L and Z (see also Crupi et al., 
2007). The present experiments replicate this basic find-
ing in a different setting and generalize it to the assess-
ment of confirmation by uncertain evidence. As implied 
by the results of both Experiments 1 and 2, confirmation 
measures L and Z accurately capture inductive reasoning 
from naive reasoners even when uncertain evidence is at 
issue (as is often the case in real settings), and both models 
outperform posterior probability as computed from Jef-
frey conditionalization, here employed for comparison as 
a competing, although theoretically spurious, predictor of 
confirmation judgments.

In order to better appreciate the results reported here, it 
is useful to consider the following points about the proce-
dures adopted, showing, in our view, how the present results 
significantly extend current knowledge of human inductive 

of violations of Equation 6 in the latter set and among all 
remaining judgments involving strict evidence uncertainty 
were 5.4% and 6.7%, respectively. Overall, although still 
minor, departures from Equation 6 were somewhat more 
common than in Experiment 1 (z test for proportion, p , 
.01), presumably reflecting an increased difficulty of the 
task. The pattern arising from quantitative analyses was 
nevertheless very similar to that in Experiment 1.

Average Pearson correlations from L, Z, and poste-
rior probability are shown in Table 6. Once again, both L 
and Z yielded very high average correlations, significantly 
greater than that with posterior probability ( p , .01, by 
paired t tests). Much as in Experiment 1, moreover, the 
higher average correlation of measure L than of Z also 
reached statistical significance ( p , .05). Also, as in Ex-
periment 1, the results are not inflated by limiting cases 
of evidence uncertainty, because all significance tests re-
main unaffected under strict evidence uncertainty—that 
is, by the removal of the 5 participants who sometimes 
provided extreme values for Pt11(e).

As a final point, let us come back to the indirect ma-
nipulation of the uncertainty of evidence concerning gen-
der by means of ambiguous pictures. As anticipated in the 
Method section, for this manipulation to reliably serve 
the aims of the experiment, the pictures shown should 
not have provided any significant direct hint with regard 
to the hypotheses at issue (i.e., independent of gender). 
Any such direct impact—if present, despite our deliberate 
precautions—would have run strongly counter to the de-
scriptive accuracy of confirmation models as applied in the 
experiment. Consider the artificial but illustrative case of 
a seemingly female hand that appears to be smeared with 
motor oil. Participants would have quite reasonably seen 
the corresponding argument as a confirmation of the mo-
torbike hypothesis. And clearly, predictions derived from 
confirmation measures in our experiment would have bla-
tantly failed to capture judgments of this kind, since they 
only had gender as an (uncertain) evidence input. As a con-
sequence, the high correlations obtained from L and Z—
perfectly in line with those in Experiment 1—also provide 
independent empirical support for the validity of the major 
methodological novelty of Experiment 2.5

GENERAL DISCUSSION

Ever since the work of chief Bayesian theorists such as 
Keynes (1921), Carnap (1950/1962), and Good (1950), 
a basic component of inductive reasoning has been iden-

Table 6 
Average Pearson Correlations Between Judged Confirmation and 

Confirmation Predicted by L and Z, and Between Judged Confirmation and 
Posterior Probability Computed by Jeffrey Conditionalization

Posterior 
Predicted Predicted Probability (Jeffrey

  Confirmation (L)  Confirmation (Z )  Conditionalization)

Judged confirmation .902* .893* .605

Note—Each value is the average of 34 Pearson correlations (1 per participant) involving 
28 observations. *Reliably greater than the average correlation for posterior probability 
at p , .01 by paired t test.
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