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ABSTRACT

Bayesian epistemology postulates a probabilistic analysis of many sorts of ordinary
and scientific reasoning. Huber ([2005]) has provided a novel criticism of Bayesianism,
whose core argument involves a challenging issue: confirmation by uncertain evidence.
In this paper, we argue that under a properly defined Bayesian account of confirmation
by uncertain evidence, Huber’s criticism fails. By contrast, our discussion will highlight
what we take as some new and appealing features of Bayesian confirmation theory.

1 Introduction
2 Uncertain Evidence and Bayesian Confirmation
3 Bayesian Confirmation by Uncertain Evidence: Test Cases and Basic

Principles

1 Introduction

Bayesian epistemology postulates a probabilistic analysis of many sorts of ordi-
nary and scientific reasoning. Also, contemporary Bayesians typically endorse
a subjective reading of probability, i.e. interpret probabilities as degrees of sub-
jective belief. Huber ([2005]) has provided a novel criticism of Bayesianism,
whose core argument involves a challenging issue: confirmation by uncertain
evidence, i.e. evidence which has not been ascertained. In order to assess Huber’s
argument, it is crucial to combine Bayesian confirmation theory with Jeffrey
conditionalisation. In this paper, we will argue that, when properly merged
with Jeffrey conditionalisation, Bayesian confirmation theory escapes Huber’s
criticism and yields some new and appealing results.

Our discussion will proceed as follows. First, we will outline a generalised
version of Bayesian confirmation theory which can be readily applied under
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Jeffrey conditionalisation. Then, we will review a crucial requirement at the core
of Huber’s argument and show that it is equivocal. We will argue that on one
reading it amounts to a compelling principle, whereas on an alternative reading
it turns out to be highly implausible. Finally, we will show that our account of
Bayesian confirmation by uncertain evidence appropriately captures the former
version of the requirement and violates the latter.

2 Uncertain Evidence and Bayesian Confirmation

For our purposes, we will consider a (non-empty) set of statements � closed
under truth-functional operators, such as negation, conjunction and disjunc-
tion. Bayesians commonly assume that, at a given time x, the belief state of an
agent A concerning the statements in � is represented by a probability function
Px defined over that set.

It may occur that, from time x to y, A experiences a change in opinion con-
cerning a particular e ∈ � (provided that Px(e) is not extreme, i.e. 0 < Px(e) < 1).
One important question is, then: how should A’s beliefs in other statements be-
longing to � change as a consequence?

Up to the mid-sixties, Bayesians had a ready answer only for the special
case in which, at time y, A has come to believe that e is certainly true, so that
Py(e) = 1 (and, correspondingly, Py(¬e) = 0). ‘Classical’ Bayesian updating or
conditionalisation (BC) postulates that

(BC) If Py(e) = 1, than for any h ∈ �, Py(h) = Px(h | e).

However, it may surely also occur that A’s degree of belief in e changes from time
x to y without reaching certainty. What will be the value of Py(h) then? Richard
Jeffrey has suggested a natural and elegant way to generalise classical Bayesian
conditionalisation ([1965], Chapter 11; also see Jeffrey [2004], pp. 53–5). In
Jeffrey conditionalisation (JC), it is assumed that

(JC) For any h ∈ �, Py(h) = Px(h | e)Py(e) + Px(h | ¬e)Py(¬e).

Thus in (JC), Py(h) is computed as an average of the ‘old’ conditional proba-
bilities of h on e versus ¬e, weighted by the current probabilities of e and ¬e,
respectively. It is easy to see that Jeffrey conditionalisation is a proper general-
isation of classical Bayesian updating in the sense that (JC) implies (BC) (not
the converse). Under Jeffrey conditionalisation, however, a change in belief
about e prompts the updating of the prior probability Px(h) to a new value
Py(h) which is generally not identical to either the conditional Px(h | e) (except
when e does become certainly true) or the conditional Px(h | ¬e) (except when
e becomes certainly false), but rather lies between those two values.
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Now consider the Bayesian notion of confirmation. Bayesian confirmation
theory has been commonly elaborated and applied on the background of clas-
sical Bayesian updating. The issue has been to formalise the impact on a hy-
pothesis h of the (often implicit, and quite restrictive) assumption of evidence
e having been ascertained, i.e. precisely in case Px(e) �= Py(e) = 1. Then h is said
to be confirmed if and only if Py(h) = Px(h|e) > Px(h) and to be disconfirmed
if and only if Py(h) = Px(h|e) < Px(h). (If Py(h) = Px(h|e) = Px(h), it is said
that coming to know that e is neutral for h.)

Can Bayesian confirmation theory be extended to cases such that from time
x to y the probability of e changes, but the assumption of e having been
ascertained at y is relaxed? In other terms, is there any natural way to parallel
Jeffrey’s generalisation of classical Bayesian updating in the framework of
confirmation, and provide a plausible probabilistic account of confirmation by
uncertain evidence? In what follows we’ll claim that the answer is in the positive.
(In essence, we will be following a proposal already made in Festa [1999],
pp. 56–9.)

It is well known that various alternative measures of confirmation have
been proposed and defended by Bayesian theorists (see Festa [1999] and
Fitelson [1999]). For our present purposes, it will be convenient to fo-
cus on a core set of such confirmation measures which share the fol-
lowing interesting property: they can be defined by means of a function
f depending only on P(h|e) and P(h), f being a strictly increasing func-
tion of the former value and a non-increasing function of the latter. We
will call such confirmation measures ‘classically P-incremental’. Classically
P-incremental measures include

• the ‘difference’ measure, first defined by Carnap ([1950/1962], p. 361)
as:

D(h, e) = P(h | e) − P(h);

• the ‘ratio’ measure, first defined by Keynes ([1921], pp. 150–5) as:

R(h, e) = P(h | e)
P(h)

;

• the ‘odds ratio’ measure, first conceived by Alan Turing (as reported
by Good [1950], pp. 62–3) as:

OR(h, e) = P(h | e)/P(¬h | e)
P(h)/P(¬h)

;
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• and the following measure, recently discussed by Crupi et al.
[2007]1

Z(h, e) =
⎧⎨
⎩

P(h|e)−P(h)
1−P(h) ifP(h | e) ≥ P(h)

P(h|e)−P(h)
P(h) otherwise.

Notice that, in the notation adopted here, P(h) = Px(h) whereas, under classical
Bayesian conditionalisation, P(h | e) = Py(h). Thus, when classical Bayesian
conditionalisation applies, the above definitions can immediately be converted
into

Dx,y(h) = Py(h) − Px(h),

Rx,y(h) = Py(h)
Px(h)

,

ORx,y(h) = Py(h)/Py(¬h)
Px(h)/Px(¬h)

,

Zx,y(h) =
⎧⎨
⎩

Py(h)−Px(h)
1−Px(h) ifPy(h) ≥ Px(h)

Py(h)−Px(h)
Px(h) otherwise.

Here, the double subscript ‘x,y’ highlights the fact that confirmation is relative
in an important sense: it is crucial for confirmation (disconfirmation) of a
hypothesis h by a change in opinion about e to occur in the shift from one
probability distribution, Px, to another, Py, such that Px(e) �= Py(e).

But now our claim is that these latter formulas already represent straightfor-
ward ways to generalise the corresponding confirmation measures as usually
defined in the literature. This is because Dx,y(h), Rx,y(h), ORx,y(h) and Zx,y(h)
all measure (although in different ways) the departure from the initial prob-
ability of h—Px(h)—of an appropriately updated probability Py(h). Under
Jeffrey conditionalisation, generalised confirmation will amount to the depar-
ture from prior probability not of the conditional Px(h|e) (which, again, is not
attained except in the special case of e having in fact being ascertained), but
rather of the updated probability Py(h) to which a change in belief about the
uncertainty of e will lead. Clearly, for any classically P-incremental Bayesian
confirmation measure, a generalised version can be devised along these lines.
Importantly, by such a move, any classically P-incremental measure will also

1 Advocates of measure D include Eells ([1982]) and Earman ([1992]). Advocates of measure R
include Horwich ([1982]) and Milne ([1996]). Advocates of measure OR include Good himself
([1950], [1983]) as well as Fitelson ([2001]). To the best of our knowledge, the earliest appear-
ance of Z is in a rather fleeting discussion in Rescher ([1958], p. 87), where a different (not
P-incremental) confirmation measure is ultimately endorsed. The positive branch of Z is identi-
cal to Rips’s ([2001], p. 129) quantitative measure of ‘inductive strength’ and ordinally equivalent
to a confirmation measure proposed by Gaifman ([1979], p. 120). Further occurrences are in the
literature on expert systems and expert judgment (see Cooke [1991], p. 57).
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satisfy a generalised condition of P-incrementality, i.e. it will be expressible by
means of a function f depending only on Py(h) and Px(h), f being a strictly
increasing function of the former value and a non-increasing function of the
latter.2

As a final remark, notice that, even beyond Jeffrey conditionalisation, gen-
eralised P-incremental measures are suitable of application under any kind of
updating rule considered in probability kinematics. This is because they only
require defined values of Px(h) and Py(h) themselves, however related.3

3 Bayesian Confirmation by Uncertain Evidence: Test Cases
and Basic Principles

Huber ([2005]) has provided a nice hypothetical test case for Bayesian confir-
mation by uncertain evidence. Suppose

h = all Scots wear kilts,

e = the Scottish guy Stephen wears a kilt.

Notice that h |= e (not the converse), so that the probability of the latter given
the former must equal 1.4 Also, a Bayesian account would provide an agent A
with initial probabilities Px(e) and Px(h) such that Px(e) > Px(h), again because
of the logical relationship between the two statements. It is then assumed that
A is initially uncertain about both e and h, so that both Px(e) and Px(h) are not
extreme. It follows that coming to believe with certainty that e would confirm
h, i.e. Px(h|e) > Px(h).

Suppose that A, who is not wearing her glasses, looks at Stephen and comes
to subjectively believe that e with a moderate level of confidence, assumed to
be represented by

Py(e) = 0.6

Importantly, Huber’s ([2005]) discussion of the example clearly suggests that
Py(e) > Px(e), i.e. that A’s observation has increased her confidence in e.

2 Such a generalised P-incrementality condition will play an important role in what follows. For
this reason, we are leaving aside here various confirmation measures proposed by Bayesian
theorists which are demonstrably not P-incremental: see (Carnap [1950/1962], p. 360; Nozick
[1981], p. 252; Mortimer [1988], Section 11.1; Christensen [1999], p. 449; Joyce [1999], Chapter 6).

3 Over the years, Bayesian theorists dealing with probability kinematics have considered various
forms of updating, as prompted by different kinds of information (see, for instance, van Fraassen
[1980]; Jeffrey [1992], Chapters 6–7).

4 Strictly speaking, in order to have h |= e, we should include ‘Stephen is Scottish’ as a separate
background knowledge statement within � and modify notation accordingly. We embedded it in
e simply for ease of exposition. This, however, has no effect on the issue discussed in this paper.
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Now consider A looking at Stephen with her glasses on and coming to sub-
jectively believe that e with a high level of confidence, such that

Pz(e) = 0.9.

Commenting on his example, Huber remarks that ‘if some e speaks in favour
of some h—say, because it is a logical consequence of the latter—then [. . .]
getting to know that e is probably true should provide confirmation for h—and
the more probable it is that e is true, the more it should do so’ (p. 105; emphasis
added). Here we will focus on the last part of this statement, conveying the
following comparative principle of confirmation by uncertain evidence:

(H) If coming to believe with certainty that e would confirm h, then, the
more probable it becomes that e is true, the more this should confirm h.

Huber considers various Bayesian confirmation measures, provides his own
formal analysis of Bayesian confirmation in the ‘kilt’ case and argues that the
difference measure D, the ratio measure R and the odds ratio measure OR all
violate the allegedly compelling principle (H). He concludes that serious doubts
arise on the adequacy of the Bayesian approach and elaborates the point in
various ways.

As Huber himself points out, however, his own example can be read in two
ways: (i) on one hand, Py and Pz could be seen as referring to two alternative
possible worlds, both branching from the state represented by Px; (ii) on the
other hand, Px, Py and Pz could be seen as following each other in a single time
sequence. Importantly, Jeffrey conditionalisation can be indifferently applied if
either (i) or (ii) is adopted and, in both cases, it provides one unique value for
Py(h) as well as one unique value for Pz(h).5 Yet the distinction between the
possible worlds and the time sequence interpretation emphasises that principle
(H) is equivocal, as it can be taken as reflecting each one of two very different
adequacy requirements imposed on a candidate measure of confirmation by
uncertain evidence c.

If the kilt example is read in terms of possible worlds, then the most natural
rendition of (H) given in our terms is:

(H.1) Provided that Px(h | e) > Px(h), if Px(e) < Py(e) < Pz(e),

then cx,y(h) < cx,z(h).

In words, this means that the higher the increase from the initial probability
of an e confirming h, the higher the confirmatory impact on h will be.

5 One may doubt that Pz(h) will remain equal when arrived at from Px versus from Py, i.e. that

Px(h | e) Pz(e) + Px(h |¬e) Pz(¬e) = Py(h | e) Pz(e) + Py(h |¬e) Pz(¬e).

This will be so, however, in virtue of a condition known as ‘rigidity’ (Jeffrey [1965], Chapter 11)
or ‘invariance’ (Jeffrey [2004], p. 52), according to which Px(h | e) = Py(h | e) and Px(h | ¬e) =
Py(h | ¬e). It can be proven that rigidity is implied by Jeffrey conditionalisation (indeed, it is
logically equivalent to it).
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If, however, the kilt example is read in terms of a single time sequence (which
is Huber’s main line in his paper), then principle (H) can also be seen as stating:

(H.2) Provided that Px(h | e) > Px(h), if Px(e) < Py(e) < Pz(e),

then cx,y(h) < cy,z(h).

As compared to (H.1), this is a completely different claim: it means that any
subsequent increase (no matter how small) in the probability of an e confirming
h will have a greater confirmatory impact on h than any previous increase (no
matter how large) in the probability of e.

Our claim here is that, while (H.1) is a perfectly safe and sound intuitive
constraint on an adequate theory of confirmation by uncertain evidence, (H.2)
is utterly implausible (as it will be argued shortly).

As for (H.1), it can be shown that the following holds (see the Appendix for
a proof):

Theorem. Any Bayesian confirmation measure cx,y(h) enjoying generalised
P-incrementality satisfies (H.1).

By contrast, in appropriate cases, all alternative confirmation measures con-
sidered here will agree in violating (H.2)—as they should, we urge. In fact, it
is easy to conceive examples where the increase from Py(e) to Pz(e) is so much
smaller (on any plausible standard of comparison) than the increase from Px(e)
to Py(e) that (H.2) is a highly unappealing principle.

To illustrate, suppose that

Px(e | h) = 1

Px(h) = 0.05

Px(e) = 0.10

Py(e) = 0.80

Pz(e) = 0.81

By Jeffrey conditionalisation, it can be computed that

Py(h) = 0.40

Pz(h) = 0.405

Then

Dx,y(h) = Py(h) − Px(h) = 0.35 > 0.005 = Pz(h) − Py(h) = Dy,z(h)

Similarly, it can be computed that

Rx,y(h) = 8 > 1.0125 = Ry,z(h)

ORx,y(h) ≈ 12.667 > 1.021 ≈ ORy,z(h)

Zx,y(h) ≈ 0.368 > 0.008 ≈ Zy,z(h)
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Thus, all four confirmation measures considered here appropriately violate
(H.2) in simple clear-cut cases, i.e. when a subsequent increase in the probability
of an e confirming h is unequivocally very small (e.g. 0.80 to 0.81) as compared
to a previous increase in the probability of the same e (e.g. 0.10 to 0.80).6

We conclude that, contrary to Huber’s claim, Bayesian confirmation the-
ory, when properly generalised, actually gets things right when it comes to
confirmation by uncertain evidence—i.e. satisfies principle (H.1) and violates
(H.2).7

Appendix

(H.1) Provided that Px(h | e) > Px(h), if Px(e) < Py(e) < Pz(e),

then cx,y(h) < cx,z(h).

Theorem. Any Bayesian confirmation measure cx,y(h) enjoying generalised
P-incrementality satisfies (H.1).

Proof. First of all, let’s point out that, in what follows, we are positing Px(e)
> 0, so that Px(h|e) is defined. Given that, we will prove that, assuming Px(h|e)
> Px(h), Px(e) < Py(e) < Pz(e) and cx,y(h) enjoys generalised P-incrementality,
the inequality cx,y(h) < cx,z(h) is verified.

6 It is fair to say that this line of argument is partly anticipated, and criticised, by Huber towards
the end of his paper ([2005], pp. 111 ff.). Huber’s critical point essentially amounts to the remark
that, when uncertain evidence is at issue, cx,y(h) crucially depends on Px even in qualitative terms
(confirmation versus disconfirmation). This seems, however, an appropriate feature of Bayesian
confirmation by uncertain evidence. Indeed, should it be the case that—for any reason—looking
at Stephen actually decreased A’s confidence in e down to 0.6 from an initially higher value, we
would like to say that this has disconfirmed h to some extent. In fact, in such a situation, cx,y(h)
would assume a negative value, since by Jeffrey conditionalisation, Py(h) would itself be lower
than Px(h). (Also see footnote 7.)

7 The lack of an explicit unpacking of statement (H) may not be the only reason why Huber
([2005]) thinks otherwise. From his analysis, it seems that a further reason boils down to his own
way of applying Bayesian confirmation under Jeffrey conditionalisation. To illustrate, consider
the ‘difference’ measure of confirmation. In our notation, Huber ([2005], p. 104) seems to have
primarily employed the following way of computing degrees of confirmation:

D∗
x,y(h) = Py(h | e) − Py(h).

This is unfortunate, however, for this quantity does not measure the departure of the appropriately
updated probability of h from the initial one. In fact, under Jeffrey conditionalisation, it seems
obvious that Py(h), and not Py(h | e), represents the degree of belief in h at time y—when the
probability of e has shifted to non-extreme values—whereas Px(h), and not Py(h), represents the
initial degree of belief in h. Indeed, if D∗

x,y(h) is adopted, not only the implausible principle
(H.2), but even the compelling requirement (H.1) itself will be systematically violated. This is
bad enough, but it gets worse. For D∗

x,y(h) implies that even a decrease (!) in the probability of
a confirming e will confirm h. In fact, it can be proven that, for whatever (non-extreme) value
of Px(e) and Py(e), provided that Px(h | e) > Px(h), D∗

x,y(h) will be higher than the neutrality
value 0. In the presence of what we see as a highly plausible alternative way to apply Bayesian
confirmation to uncertain evidence, which does not exhibit such undesirable properties, the latter
remarks seem to show the inadequacy of D∗

x,y(h)—not of Bayesian confirmation theory itself.
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By the probability calculus, the following equivalence can be derived:

Px(h | e) > Px(h) ⇔ Px(h | e) > Px(h |¬e). (1)

Since by hypothesis, Px(h | e) > Px(h), then, by Equation (1), one has Px(h |
e > Px(h | ¬e) as well, whence Px(h | e) − Px(h | ¬e) > 0. Also, by hypothesis,
Py(e) − Px(e) > 0. So the product of Px(h | e) − Px(h | ¬e) and Py(e) − Px(e)
will be itself greater than zero. The latter inequality can be algebraically ma-
nipulated as follows:

[Px(h | e) − Px(h |¬e)] · [Py(e) − Px(e)] > 0 ⇔
Px(h | e) · [Py(e) − Px(e)] − Px(h |¬e) · [Py(e) − Px(e)] > 0 ⇔
Px(h | e) · [Py(e) − Px(e)] + Px(h |¬e) · [Py(¬e) − Px(¬e)] > 0 ⇔
Px(h | e)Px(e) + Px(h |¬e)Px(¬e) < Px(h | e)Py(e) + Px(h |¬e)Py(¬e). (2)

By the theorem of total probabilities, Equation (2) can be rewritten as:

Px(h) < Px(h | e)Py(e) + Px(h |¬e)Py(¬e). (3)

Since, by hypothesis, also Pz(e) − Py(e) > 0, an analogous manipulation yields:

Px(h | e)Py(e) + Px(h |¬e)Py(¬e) < Px(h | e)Pz(e) + Px(h |¬e)Pz(¬e). (4)

And, by Jeffrey conditionalisation, Equations (3) and (4) imply:

Px(h) < Py(h) < Pz(h). (5)

By enjoying generalised P-incrementality, cx,y(h) is by definition a strictly in-
creasing function of the update probability of h. Hence, from Equation (5) it
immediately follows that:

cx,y(h) < cx,z(h).
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