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ABSTRACT

Probability ratio and likelihood ratio measures of inductive support and related notions

have appeared as theoretical tools for probabilistic approaches in the philosophy of

science, the psychology of reasoning, and artificial intelligence. In an effort of conceptual

clarification, several authors have pursued axiomatic foundations for these two families

of measures. Such results have been criticized, however, as relying on unduly demanding

or poorly motivated mathematical assumptions. We provide two novel theorems

showing that probability ratio and likelihood ratio measures can be axiomatized in

a way that overcomes these difficulties.

1 Introduction

2 Axioms for Probability Ratio Measures

3 Axioms for Likelihood Ratio Measures

4 Discussion

1 Introduction

In what follows, we will denote the quantity below as the probability ratio:

PðhjeÞ

PðhÞ

To ensure mathematical definiteness, we will assume throughout that h and e

are contingent statements and P is a regular probability function (so that

0<P(h), P(e)< 1).

From Keynes ([1921], pp. 165ff) to Kuipers ([2000], pp. 49ff), the probabil-

ity ratio, or strictly increasing functions of it, have often been said to measure

the degree of inductive support or confirmation that evidence e provides to

hypothesis h. Similarly, the probability ratio has been employed to character-

ize the strength of inductive arguments in the psychological study of human
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reasoning (see Viale and Osherson [2000]; Lo et al. [2002], p. 186), with e and h

denoting premise and conclusion, respectively. Further, probability ratio

measures have been invoked to quantify the explanatory power of hypothesis

h with regards to datum e (Popper [1954], p. 147; McGrew [2003]), the severity

of e as a (positive) test of hypothesis h (Popper [1963], p. 526), the amount of

information transmitted by statement e relative to statement h (Hintikka

[1968]), and the degree of coherence between statements e and h (Shogenji

[1999]; Schupbach [2011]). Moreover, the notion of relative change in risk as

employed in epidemiology also amounts to a probability ratio measure.1

On the other hand, we will denote the following quantity as the likelihood

ratio:

PðejhÞ

Pðej:hÞ

The likelihood ratio, and strictly increasing functions of it, have no less a

remarkable historical record than probability ratio measures. As reported by

Irving John Good, the likelihood ratio was crucially employed by Alan Turing

in a ‘vital cryptanalytic application’ during the Second World War and said to

quantify ‘the factor in favour of h provided by e’ (Good [1985], p. 252; also see

Good [1950], pp. 62–3). Likelihood ratio measures have since been used to

explicate or represent a number of related notions, namely, weight of evidence

(Good [1950]; Minsky and Selfridge [1961]), belief change (Heckerman

[1988]), corroboration (Good [1960], [1968]), and once again support or con-

firmation (for example, Kemeny and Oppenheim [1952]; Watanabe [1969],

p. 374; Fitelson [2001]), as well as inductive argument strength (Oaksford

and Hahn [2007], pp. 286 ff; also see Tenenbaum and Griffiths [2001]).

Likelihood ratio measures have also played a central role in the definition

and interpretation of some classical expert systems (Duda et al. [1976];

Heckerman [1986]; Heckerman and Shortliffe [1992]) as well as in other

areas of artificial intelligence (for example, Dembczynski et al. [2007]).

According to Fitelson and Hitchcock ([2011]), the likelihood ratio reflects a

measure of causal strength in the spirit of Lewis ([1986]) (with h and e here

denoting an antecedent causal factor and an associated subsequent event,

respectively). Finally, the likelihood ratio occurs as a summary measure of

the diagnostic value of a test result in the medical literature (Deeks and

Altman [2004]) and as a measure of the probative value of a datum in legal

reasoning and forensic science (Kaye and Koehler [2003]; Taroni et al. [2006]).

1 To see why, let P(h) be the so-called control event rate and P(hje) the event rate on e (the latter

being a relevant experimental intervention or environmental exposure). The standard definition

of relative change in risk (increase/reduction) becomes (P(hje)�P(h))/P(h) (see, for example,

Barratt et al. [2004]), which is a simple increasing function of the probability ratio, namely,

P(hje)/P(h)� 1.
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Seeking theoretical clarification, a natural goal is to axiomatize these

two families of measures, i.e. to identify conditions that are necessary and

sufficient to single out each of them as capturing a target notion. Indeed,

various results of this kind have been presented. For our purposes,

Heckerman ([1988]) provides a useful starting point. Heckerman was

following Cox ([1946]), who derived probability as an essentially unique

quantitative representation that fulfilled a few axioms held to characterize

belief. In the attempt to provide a parallel result concerning probabilistic

change in belief (or belief update), here labelled C(h, e), Heckerman offered

an axiomatic foundation of likelihood ratio measures involving the following

principle:

(H) P(hje) is a continuous function of C(h, e) and P(h) only, and is

increasing in each argument when the other is held constant.

If P is required to range over a continuous interval, however, its domain

must also be non-denumerable. As a consequence, Heckerman’s ([1988])

theorem does not cover as simple a case as, say, a well-specified urn setting.

This point was forcefully noted by Halpern ([1999]), who traced the problem

back to Cox ([1946]) himself. According to Fitelson ([2006]), the same diffi-

culty afflicts two further contributions that are rather well-known in the phil-

osophy of science, i.e. Good’s ([1960]) earlier axiomatic derivation of

likelihood ratio measures for the weight of evidence (also see Good [1968],

[1984]) and Milne’s ([1996]) derivation of the log probability ratio measure for

confirmation. In fact, a common trait of all these contributions is the reliance

on certain properties of functional equations (see Aczel [1966]) which presup-

pose the functions involved to be continuous. A possible resolution had been

envisaged by Halpern ([1999]) himself: in order to defend the technical as-

sumptions needed, one might emphasize that the function representing belief

(or change in belief, for that matter) has to ‘apply uniformly to all domains’ (p.

80). In Huber’s ([2008]) view, for instance, this line of argument would make

continuity assumptions such as those in Milne ([1996]) ‘perfectly reasonable’

(p. 419). Be that as it may, they still would ‘have no intuitive connection to

material desiderata for inductive logic’, as Fitelson ([2006]) pointed out (p.

506, fn 12).

Here we argue that the above difficulty can be overcome altogether. As we

will show, probability ratio and likelihood ratio measures can be axiomatized

just by means of principles that are philosophically significant while mathem-

atically undemanding, with no need for the domain of the probability function

to be non-denumerable. Most of the points summarized above arose in dis-

cussions of probabilistic measures of confirmation, and we will also adopt the

same framework for our presentation. However, this does not prevent

our results and their consequences from being exploited in other contexts
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(for example, probabilistic measures of explanatory power, coherence, causal

strength, and so on).

2 Axioms for Probability Ratio Measures

Let L be a propositional language and Lc the set of the contingent formulae

in L, i.e. those expressing neither logical truths nor logical falsehoods.

Further, let P be the set of all regular probability functions that can be defined

over L. Each element P2P can thus be seen as representing a possible

(non-dogmatic, see Howson [2000], p. 70) state of belief concerning a

domain described in L. In order to run our argument, we will need to explicitly

represent the dependence of confirmation on a given probability distribution,

thus positing C: {Lc�Lc�P}!R and adopting the notation CP(h, e), with

h, e 2 Lc.
2 Our first axiom is as follows:

A0. Formality.

There exists a function g such that, for any h, e 2 Lc and any P 2 P,

CP h, eð Þ ¼ g Pðh ^ eÞ, P hð Þ, P eð Þ½ �:

Note that the probability distribution over the algebra generated by h and e is

entirely determined by P(h^ e), P(h) and P(e). So A0 simply states that

CP(h, e) depends on that distribution, and nothing else. This is a widespread

(albeit often tacit) assumption in discussions of confirmation in a probabilistic

framework. Under slightly different renditions, it is also explicitly subscribed

to by both Good ([1960], p. 322, [1968], pp. 127–8) and Milne ([1996], p. 21).

The label formality is drawn from Tentori et al. ([2007], [2010]).

Now consider the following:

A1. Final probability incrementality.

For any h, e1, e22Lc and any P2P, CP(h, e1) x CP(h, e2) iff

P(hje1) x P(hje2).

A2. Law of likelihood.

For any h1, h2, e2Lc and any P2P, CP(h1, e) x CP(h2, e) iff

P(ejh1) x P(ejh2).

A1 is closely related to the homonymous condition in Crupi et al. ([2010],

pp. 77–9), there identified as describing a very basic property of the Bayesian

notion of confirmation. The principle appears under the label ‘law of con-

ditional probability’ in Hájek and Joyce ([2008], p. 122). The right-to-left part

2 As usual, a further term, B, should be included, representing relevant background knowledge

and assumptions, thus having CP(h, ejB). Such a term will be omitted from our notation for

simple reasons of convenience, as it is inconsequential for our discussion.
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of the biconditional also occurs in Steel ([2003], pp. 219–21) (who provides a

few further references) and in Eells and Fitelson ([2000], p. 670), who remark:

‘it is not an exaggeration to say that most Bayesian confirmation theorists’

would accept it ‘as a desideratum for Bayesian measures of confirmation’

(see Fitelson [2006], p. 506, for yet another occurrence and a similar com-

ment). As Eells and Fitelson ([2000]) further point out, the principle is

crucially involved in classical Bayesian analyses such as the solution of the

ravens paradox offered by Horwich ([1982], pp. 54–63).

A2 is endorsed by both Edwards ([1972], pp. 30–1) and Milne ([1996]).

The label ‘law of likelihood’ goes back to Hacking ([1965]) and also occurs

in Hájek and Joyce ([2008], p. 122) as well as in Crupi et al. ([2010], pp. 82–3).3

The following can be proved (essentially the same theorem was anticipated

in Chater and Oaksford [2008, unpublished]):

Theorem 1 A0–A2 iff there exists a strictly increasing function, f, such that

CPðh, eÞ ¼ f PðhjeÞ
PðhÞ

� �
.

A proof of Theorem 1 is provided in the Appendix.

3 Axioms for Likelihood Ratio Measures

In the set of axioms below, A2 has been replaced by a different statement A2*:

A0. Formality.

There exists a function g such that, for any h, e2Lc and any P2P,

CP h, eð Þ ¼ g Pðh ^ eÞ, P hð Þ, P eð Þð Þ:

A1. Final probability incrementality.

For any h, e1, e22Lc and any P2P, CP(h, e1) x CP(h, e2) iff

P(hje1) x P(hje2).

A2*. Modularity (for conditionally independent data).

For any h, e1, e2 2 Lc and any P 2 P, if P(e1j±h^e2)¼P(e1j±h), then

CP(h, e1je2)¼CP(h, e1).

The notion of conditional confirmation in A2* is meant as usual, i.e. with

all the relevant values from P being conditionalized on e2. The label for A2*

is freely adapted after Heckerman ([1988], pp. 18–19). The same principle also

appears in Good ([1968], p. 134) and Fitelson ([2001], p. S130).

3 Sober ([2008], pp. 32ff) deserves separate mention here, for he deliberately handles the ‘law of

likelihood’ as allowing for a non-committal attitude towards Bayesian priors, so that his ren-

dition does not imply our condition A2. Also notice that A2 is not restricted to pairs of mutually

exclusive hypotheses, h1 and h2 (see the discussion in Steel [2007]).
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The following can be shown:

Theorem 2 A0–A2* iff there exists a strictly increasing function, f, such that

CPðh, eÞ ¼ f PðejhÞ
Pðej:hÞ

� �
:

A proof of Theorem 2 is also provided in the Appendix.

Heckerman’s ([1988]) main result closely resembles Theorem 2, but with

his demanding principle (H) above instead of A1. The connection between

A1 and (H) is thus of particular interest here. On the one hand, as we already

know, A1 does not require any continuous probability function and thus

no commitment to a non-denumerable domain. But A1 does convey one

core philosophical tenet of (H), i.e. that for any hypothesis, h, posterior and

confirmation always move in the same direction in the light of data, e. As

pointed out above, this seems intuitively compelling, and certainly so within

a Bayesian perspective.

4 Discussion

While we confined full-fledged proofs to the Appendix, an informal overview

of the proof strategy involved might be of interest, in that it indirectly eluci-

dates how functional equations and continuity assumptions can be dispensed

with.4 The left-to-right implication for the probability ratio case (i.e. Theorem

1 above) will serve as an example. (The right-to-left side of both theorems is

indeed rather straightforward.)

As a first step, one relies on axiom A0 to point out that CP(h, e) demon-

strably is a function of P(h) and P(e) along with the target quantity relating

h and e, in this case the probability ratio itself P(hje)/P(h), so that CP(h, e)

¼ j(P(hje)/P(h), P(h), P(e)). One proceeds to show, however, that were

CP(h, e) to actually depend on P(e), it would then give different values for

some distinct e1 and e2 with P(e1) 6¼P(e2) even if P(hje1)¼P(hje2), thus violat-

ing axiom A1. So A1 rules out P(e) as a separate relevant variable for CP(h, e)

and in fact dictates that CP(h, e)¼ k(P(hje)/P(h), P(h)). By a similar move, one

can now show that, were CP(h, e) to actually depend on P(h), it would then

give different values for some distinct h1 and h2 with P(h1) 6¼P(h2) even if

P(h1je)/P(h1)¼P(h2je)/P(h2), namely—by Bayes’s theorem—P(ejh1)¼

P(ejh2), thus violating axiom A2. So A2 further rules out P(h) as a separate

relevant variable for CP(h, e) and in fact dictates that CP(h,e)¼ f (P(hje)/P(h)).

Finally, the strictly increasing behaviour of f easily follows too, once again

from A1. Essentially the same pattern of derivation applies in the likelihood

ratio proof (Theorem 2 above) and can be exploited in still other cases (see

Crupi and Tentori [forthcoming (a), (b)] for other applications).

4 We thank an anonymous reviewer for suggesting this illustration.
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As concerns further implications of our current results, let us first take

the connection between probability ratio measures and the law of likelihood.

This had not escaped notice in the literature (see Fitelson [2007]). The con-

nection is only partial, however, as shown by consideration of Mortimer’s

([1988], Section 11.1) measure of confirmation (formally equivalent to

Suppes’s [1970] measure of causal strength as construed by Fitelson and

Hitchcock [2011]):

P ejhð Þ � P eð Þ:

This quantity does satisfy our axiom A2, i.e. the law of likelihood, while

being ordinally divergent from probability ratio measures (see Crupi et al.

[2007], p. 231, for a proof of this divergence). Our Theorem 1 above neatly

identifies what more, beyond A2, is necessary and sufficient to isolate prob-

ability ratio measures, i.e. axioms A0 and A1 (indeed, Mortimer’s measure

demonstrably breaks with axiom A1.)

Similarly, consider A2*, i.e. modularity for conditionally independent data.

Its connection with likelihood ratio measures has itself been repeatedly

noticed (see Good [1968]; Fitelson [2001]). Yet that principle is also satisfied

by a quantity that is ordinally distinct (see again Crupi et al. [2007], p. 231), i.e.

Nozick’s [1981] measure of confirmation (formally equivalent to Eells’s [1991]

measure of causal strength, as construed by Fitelson and Hitchcock [2011]),

namely, the following:

P ejhð Þ � P ej:hð Þ:

Theorem 2 above tells us what more, beyond A2*, is necessary and sufficient

to single out likelihood ratio measures, i.e. again Axioms A0 and A1 (Nozick’s

measure also breaks with Axiom A1; see Crupi et al. [2010], p. 81.)

More broadly, analyses in the literature can be roughly distinguished as

favouring ‘monism’ (for example, Good [1984]; Heckerman [1988]; Milne

[1996]; Fitelson [2001]; Crupi and Tentori [2010]) versus more or less extreme

forms of pluralism concerning alternative measures of confirmation (for

example, Festa [1999]; Howson [2000], pp. 184–5; Steel [2007]; Hájek and

Joyce [2008]; Huber [2008]). A similar situation arises in related domains,

such as the probabilistic formalization of explanatory power (see, for example,

Schupbach and Sprenger [2011]; Crupi and Tentori [2012]). In this contribu-

tion, we do not enter these debates. We do believe, however, that axiomatizing

alternative candidate explications of epistemological concepts fosters insight

in their properties and discussion of their implications. So far, it has appeared

that such insights come at the cost of accepting mathematical assumptions

of continuity that were debatable and yet required for technical reasons.

Not so.
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Appendix

Proof of Theorem 1: A0–A2 iff there exists a strictly increasing function, f,

such that CPðh, eÞ ¼ f PðhjeÞ
PðhÞ

� �
.

The proof provided concerns the left-to-right implication in the theorem

(verification of the right-to-left implication is straightforward).

Notice that P(h^ e)¼ (P(hje)/P(h))P(h)P(e). As a consequence, by

A0, there exists a function, j, such that, for any h, e 2 Lc and any P 2 P,

CP(h, e)¼ j(P(hje)/P(h), P(h), P(e)). With no loss of generality, we will convey
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probabilistic coherence and regularity by constraining the domain of j to in-

clude triplets of values (x, y, z) such that the following conditions are jointly

satisfied:

(i) 0< y, z< 1;

(ii) x� 0, by which x¼P(hje)/P(h)� 0, so that P(hje)� 0, and thus

P(h^ e)� 0;

(iii) x� 1/y, by which xy¼P(hje)� 1, so that P(h^ e)�P(e), and thus

P(:h^ e)� 0;

(iv) x� 1/z, by which xz¼P(ejh)� 1, so that P(h^ e)�P(h), and thus

P(h^:e)� 0;

(v) x� (y + z� 1)/yz, by which xyz¼P(h^ e)�P(h) + P(e)� 1¼ y + z� 1,

and thus P(h^ e) + P(:h^ e) + P(h^:e)� 1.

We thus posit j: {(x, y, z) 2 {R+
[ {0}}� (0, 1)2

j (y + z� 1)/yz� x� 1/y,

1/z}! R and denote the domain of j as Dj.

Lemma 1.1: For any x, y, z1, z2 such that x 2 R+
[ {0}, y, z1, z2 2 (0,1), and

(y + z1� 1)/yz1, (y + z2� 1)/yz2� x� 1/y, 1/z1, 1/z2, there exist h, e1, e2 2 Lc

and P 0 2 P such that P 0(hje1)/P 0(h)¼P 0(hje2)/P 0(h)¼ x, P 0(h)¼ y, P 0(e1)¼ z1

and P 0(e2)¼ z2.

Proof: The equalities in Lemma 1.1 arise from the following scheme of prob-

ability assignments:

P0ðh^ e1 ^ e2Þ ¼ xz1ð Þ xz2ð Þy; P0ð:h^ e1 ^ e2Þ ¼
ð1�xyÞ2z1z2

ð1�yÞ
;

P0ðh^ e1 ^:e2Þ ¼ xz1ð Þ 1� xz2ð Þy; P0 :h^ e1 ^:e2ð Þ ¼ 1� xyð Þz1 1� ð1�xyÞz2

ð1�yÞ

� �
;

P0 h^:e1 ^ e2ð Þ ¼ 1� xz1ð Þ xz2ð Þy; P0ð:h^:e1 ^ e2Þ ¼ 1� ð1�xyÞz1

ð1�yÞ

� �
ð1� xyÞz2;

P0ðh^:e1 ^:e2Þ¼ 1�xz1ð Þ 1�xz2ð Þy; P0 :h^:e1 ^:e2ð Þ¼ 1�ð1�xyÞz1

ð1�yÞ

� �
1�ð1�xyÞz2

ð1�yÞ

� �
ð1� yÞ:

Suppose there exist (x, y, z1), (x, y, z2) 2 Dj such that j(x, y, z1) 6¼ j(x, y,

z2). Then, by Lemma 1.1 and the definition of Dj, there exist h, e1, e2 2 Lc

and P 0 2P such that P 0(hje1)/P 0(h)¼P 0(hje2)/P 0(h)¼x, P 0(h)¼ y,

P 0(e1)¼ z1, and P 0(e2)¼ z2. Clearly, if the latter equalities hold, then

P 0(hje1)¼P 0(hje2). Thus, there exist h, e1, e2 2 Lc and P 0 2P such that

CP0(h, e1)¼ j(x, y, z1) 6¼ j(x, y, z2)¼CP 0(h, e2) even if P 0(hje1)¼P 0(hje2),

contradicting A1. Conversely, A1 implies that, for any (x, y, z1), (x, y, z2) 2

Dj, j(x, y, z1)¼ j(x, y, z2). So, for A1 to hold, there must exist k such that,

for any h, e2Lc and any P2P, CP(h, e)¼ k(P(hje)/P(h),P(h)) and

k(x, y)¼ j(x, y, z). We thus posit k: {(x, y) 2 {R+
[ {0}}� (0, 1) j x� 1/y}

! R and denote the domain of k as Dk.
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Lemma 1.2: For any x, y1, y2 such that x 2 R+
[ {0}, y1, y2 2 (0, 1) and

x� 1/y1, 1/y2, there exist h1, h2, e 2 Lc and P00 2P such that P00(h1je)/

P00(h1)¼P00(h2je)/P00(h2)¼x, P00(h1)¼ y1, and P00(h2)¼ y2.

Proof: Let z 2 (0, 1) be given so that z� 1/x, (1� y1)/(1� xy1), (1� y2)/

(1�xy2) (as the latter quantities must all be positive, z exists). The

equalities in Lemma 1.2 arise from the following scheme of probability

assignments:

P0 0 h1 ^ h2 ^ eð Þ ¼ xy1ð Þ xy2ð Þz; P0 0 :h1 ^ h2 ^ eð Þ ¼ 1� xy1ð Þ xy2ð Þz;

P0 0 h1 ^ h2 ^:eð Þ ¼
ð1�xzÞ2y1y2

ð1�zÞ
; P0 0 :h1 ^ h2 ^:eð Þ ¼ 1� ð1�xzÞy1

ð1�zÞ

� �
1� xzð Þy2;

P0 0 h1 ^:h2 ^ eð Þ ¼ xy1ð Þ 1� xy2ð Þz; P0 0ð:h1 ^:h2 ^ eÞ ¼ 1� xy1ð Þ 1� xy2ð Þz;

P0 0 h1^:h2^:eð Þ¼ 1�xzð Þy1 1�ð1�xzÞy2

ð1�zÞ

� �
; P0 0ð:h1^:h2^:eÞ¼ 1�ð1�xzÞy1

ð1�zÞ

� �
1�ð1�xzÞy2

ð1�zÞ

� �
1�zð Þ:

Suppose there exist (x, y1), (x, y2)2 Dk such that k(x, y1) 6¼ k(x, y2). Then,

by Lemma 1.2 and the definition of Dk, there exist h1, h2, e 2 Lc and P00 2 P

such that P00(h1je)/P00(h1)¼P00(h2je)/P00(h2)¼x, P00(h1)¼ y1, and P00(h2)¼ y2.

By the probability calculus, if the latter equalities hold, then P00(ejh1)¼

P00(ejh2). Thus, there exist h1, h2, e 2 Lc and P00 2 P such that CP0 0(h1, e)¼

k(x, y1) 6¼ k(x, y2)¼CP0 0(h2, e) even if P00(ejh1)¼P00(ejh2), contradicting A2.

Conversely, A2 implies that, for any (x, y1), (x, y2) 2 Dk, k(x, y1)¼ k(x, y2).

So, for A2 to hold, there must exist f such that, for any h, e 2 Lc and any

P 2 P, CP(h, e)¼ f (P(hje)/P(h)) and f(x)¼ k(x, y). We thus posit f : {R+
[

{0}}! R and denote the domain of f as Df.

Lemma 1.3: For any x1, x2 2 R+
[ {0}, there exist h, e1, e2 2 Lc and P 0 00 2 P

such that P 0 00(hje1)/P 000(h)¼x1 and P 000(hje2)/P 0 00(h)¼x2.

Proof: Let y, z1, z2 2 (0, 1) be given so that y� 1/x1,1/x2 (as the latter

quantities must all be positive, y exists), z1� 1/x1, (1� y)/(1�x1y) (as the

latter quantities must all be positive, z1 exists), and z2� 1/x2, (1� y)/(1� x2y)

(as the latter quantities must all be positive, z2 exists). The equalities in Lemma

1.3 arise from the following scheme of probability assignments:

P0 0 0 h^ e1 ^ e2ð Þ ¼ x1z1ð Þ x2z2ð Þy; P0 0 0 :h^ e1 ^ e2ð Þ ¼
1�x1yð Þ 1�x2yð Þz1z2

1�yð Þ
;

P0 0 0 h^ e1 ^:e2ð Þ ¼ x1z1ð Þ 1� x2z2ð Þy; P0 0 0 :h^ e1 ^:e2ð Þ ¼ 1� x1yð Þz1 1� 1�x2yð Þz2

1�yð Þ

� �
;

P0 0 0 h^:e1 ^ e2ð Þ ¼ 1� x1z1ð Þ x2z2ð Þy; P0 0 0 :h^:e1 ^ e2ð Þ ¼ 1� 1�x1yð Þz1

1�yð Þ

� �
1� x2yð Þz2;

P0 0 0 h^:e1^:e2ð Þ¼ 1�x1z1ð Þ 1�x2z2ð Þy; P0 0 0 :h^:e1^:e2ð Þ¼ 1� 1�x1yð Þz1

1�yð Þ

� �
1� 1�x2yð Þz2

1�yð Þ

� �
1�yð Þ:

Suppose there exist x1, x2 2 Df such that x1> x2 and f (x1) � f (x2).

Then, by Lemma 1.3 and the definition of Df, there exist h, e1, e2 2 Lc
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and P 0 00 2 P such that P 000(hje1)/P 000(h)¼ x1 and P 000(hje2)/P 000(h)¼x2.

Clearly, if the latter equalities hold, then P 000(hje1)>P 000(hje2). Thus,

there exist h, e1, e2 2 Lc and P 000 2P such that CP0 00(h, e1)¼

f(x1)� f (x2)¼CP0 0 0(h, e2) even if P 000(hje1)>P 0 00(hje2), contradicting A1.

Conversely, A1 implies that, for any x1, x2 2 R+
[ {0}, if x1>x2 then

f(x1)> f(x2). By a similar argument, A1 also implies that, for any x1, x2

2 R+
[ {0}, if x1¼x2 then f (x1)¼ f (x2). So, for A1 to hold, it must be

that, for any h, e 2 Lc and any P 2 P, CP(h, e)¼ f(P(hje)/P(h)) and f

is a strictly increasing function. «

Proof of Theorem 2: A0–A2* iff there exists a strictly increasing function, f,

such that CPðh, eÞ ¼ f PðejhÞ
Pðej:hÞ

� �
.

The proof provided concerns the left-to-right implication in the theorem

(verification of the right-to-left implication is straightforward).

Notice that

Pðh ^ eÞ ¼
PðhÞ PðejhÞ

Pðej:hÞ

PðhÞ PðejhÞ
Pðej:hÞ

+Pð:hÞ
PðeÞ

As a consequence, by A0, there exist a function j such that, for any h, e 2 Lc

and any P 2 P, CP(h, e)¼ j(P(ejh)/P(ej:h), P(h), P(e)). With no loss of gen-

erality, we will convey probabilistic coherence and regularity by constraining

the domain of j to include triplets of values (x, y, z) such that the following

conditions are jointly satisfied:

(i) 0< z< 1;

(ii) x� 0, by which xy/(xy + (1� y))¼P(hje)� 0, and thus P(h^ e)� 0;

(iii) 0< y< 1, by which xy/(xy + (1� y))¼P(hje)� 1, so that P(h^ e)�P(e),

and thus P(:h^ e)� 0;

(iv) (z� y)_ (x� (1� y)/(z� y)), by which xz/(xy + (1� y))¼P(ejh)� 1, so

that P(h^ e)�P(h), and thus P(h^:e)� 0;

(v) x� (y + z� 1)/y, by which z/(xy + (1� y))¼P(ej:h)� 1, so that

P(:h^ e)� 1�P(h), and thus P(h^ e) + P(:h^ e) + P(h^:e)� 1.

We thus posit j: {(x, y, z) 2 {{R+
[ {0}}� (0, 1)2

j (y + z� 1)/y� x and

((z� y)_ (x� (1� y)/(z� y)))}! R and denote the domain of j as Dj.

Lemma 2.1: For any x,y,z1,z2 such that x 2 R+
[ {0}, y, z1, z2 2 (0, 1),

(y + z1� 1)/y, (y + z2� 1)/y� x, ((z1� y)_ (x� (1� y)/(z1� y))) and

((z2� y)_ (x� (1� y)/(z2� y))), there exist h, e1, e2 2 Lc and P 0 2 P such

that P 0(e1jh)/P 0(e1j:h)¼P 0(e2jh)/P 0(e2j:h)¼x, P 0(h)¼ y, P 0(e1)¼ z1, and

P 0(e2)¼ z2.
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Proof: The equalities in Lemma 2.1 arise from the following scheme of prob-

ability assignments:

P0 h^ e1 ^ e2ð Þ ¼ z1x
yx+ 1�yð Þ

� �
z2x

yx+ 1�yð Þ

� �
y; P0 :h^ e1 ^ e2ð Þ ¼ z1

yx+ 1�yð Þ

� �
z2

yx+ 1�yð Þ

� �
1� yð Þ;

P0 h^ e1 ^:e2ð Þ ¼ z1x
yx+ 1�yð Þ

� �
1� z2x

yx+ 1�yð Þ

� �
y; P0 :h^:e1 ^ e2ð Þ ¼ 1� z1

yx+ 1�yð Þ

� �
z2

yx+ 1�yð Þ

� �
1� yð Þ;

P0 h^:e1 ^ e2ð Þ ¼ 1� z1x
yx+ 1�yð Þ

� �
z2x

yx+ 1�yð Þ

� �
y; P0 :h^ e1 ^:e2ð Þ ¼ z1

yx+ 1�yð Þ

� �
1� z2

yx+ 1�yð Þ

� �
1� yð Þ;

P0 h^:e1^:e2ð Þ¼ 1� z1x
yx+ 1�yð Þ

� �
1� z2x

yx+ 1�yð Þ

� �
y; P0 :h^:e1^:e2ð Þ¼ 1� z1

yx+ 1�yð Þ

� �
1� z2

yx+ 1�yð Þ

� �
1�yð Þ:

Suppose there exist (x, y, z1), (x, y, z2) 2 Dj such that j(x, y, z1) 6¼ j(x, y, z2).

Then, by Lemma 2.1 and the definition of Dj, there exist h, e1, e2 2 Lc and P 0 2

P such that P 0(e1jh)/P 0(e1j:h)¼P 0(e2jh)/P 0(e2j:h)¼x, P 0(h)¼ y, P 0(e1)¼ z1,

and P 0(e2)¼ z2. By the probability calculus, if the latter equalities hold,

then P 0(hje1)¼P 0(hje2). Thus, there exist h, e1, e2 2 Lc and P 0 2 P such that

CP 0(h, e1)¼ j(x, y, z1) 6¼ j(x, y, z2)¼CP 0(h, e2) even if P 0(hje1)¼P 0(hje2),

contradicting A1. Conversely, A1 implies that, for any (x, y, z1), (x, y, z2) 2

Dj, j(x, y, z1)¼ j(x, y, z2). So, for A1 to hold, there must exist k such that, for

any h, e 2 Lc and any P 2 P, CP(h, e)¼ k[P(ejh)/P(ej:h), P(h)] and k(x,

y)¼ j(x, y, z). We thus posit k: {(x, y) 2 {R+
[ {0}}� (0, 1)} ! R and

denote the domain of k as Dk.

Lemma 2.2: For any x, y1, y2 such that x 2R+
[ {0} and y1, y2 2 (0, 1), there

exist h, e1, e2 2 Lc and P00 2 P such that P00(e1jh)/P00(e1j:h)¼x,

P00(e1jh)¼P00(e1jh ^ e2), P00(e1j:h)¼P00(e1j:h^ e2), P00(h)¼ y1, and

P00(hje2)¼ y2.

Proof: Let z1, z2 2 (0, 1) be given so that z1� y1, xy1 + (1� y1) (as the latter

quantities must all be positive, z1 exists) and z2� y1/y2, (1� y1)/(1� y2) (as

the latter quantities must all be positive, z2 exists). The equalities in Lemma 2.2

arise from the following scheme of probability assignments:

P0 0 h^ e1 ^ e2ð Þ ¼ z1x
y1x+ 1�y1ð Þ

� �
y2z2; P0 0 :h^ e1 ^ e2ð Þ ¼ z1

y1x+ 1�y1ð Þ

� �
1� y2ð Þz2;

P0 0 h^ e1 ^:e2ð Þ ¼ z1x
y1x+ 1�y1ð Þ

� �
y1� y2z2ð Þ; P0 0 :h^ e1 ^:e2ð Þ ¼ z1

y1x+ 1�y1ð Þ

� �
1� y1�y2z2

1�z2ð Þ

� �
1� z2ð Þ;

P0 0 h^:e1 ^ e2ð Þ ¼ 1� z1x
y1x+ 1�y1ð Þ

� �
y2z2; P0 0 :h^:e1 ^ e2ð Þ ¼ 1� z1

y1x+ 1�y1ð Þ

� �
1� y2ð Þz2;

P0 0 h^:e1^:e2ð Þ¼ 1� z1x
y1x+ 1�y1ð Þ

� �
y1�y2z2ð Þ; P0 0 :h^:e1^:e2ð Þ ¼ 1� z1

y1x+ 1�y1ð Þ

� �
1�y1�y2z2

1�z2ð Þ

� �
1�z2ð Þ:

Suppose there exist (x, y1), (x, y2) 2Dk such that k(x, y1) 6¼ k(x, y2). Then, by

Lemma 2.2 and the definition of Dk, there exists h, e1, e2 2 Lc and P00 2 P

such that P00(e1jh)/P00(e1j:h)¼x, P00(e1jh)¼P00(e1jh^ e2), P00(e1j:h)¼

P00(e1j:h^ e2), P00(h)¼ y1, and P00(hje2)¼ y2. Clearly, if the latter equalities

hold, then P00(e1j± h)¼P00(e1j±h^ e2). Thus, there exist h, e1, e2 2 Lc and P00

2 P such that CP0 0(h, e1)¼ k(x, y1) 6¼ k(x, y2)¼CP00(h, e1je2) even if P00(e1j±h)¼

P00(e1j±h^ e2), contradicting A2*. Conversely, A2* implies that, for any
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(x, y1), (x, y2) 2 Dk, k(x, y1)¼ k(x, y2). So, for A2* to hold, there must exist f

such that, for any h, e 2 Lc and any P 2 P, CP(h, e)¼ f(P(ejh)/P(ej:h))

and f(x)¼ k(x, y). We thus posit f: {R+
[ {0}} ! R and denote the

domain of f as Df.

Lemma 2.3: For any x1, x2 2 R+
[ {0}, there exist h, e1, e2 2 Lc and P 0 00 2 P

such that P 0 00(e1jh)/P 000(e1j:h)¼ x1 and P 000(e2jh)/P 000(e2j:h)¼x2.

Proof: Let y, z1, z2 2 (0, 1) be given so that z1� y, x1y + (1� y) (as the latter

quantities must all be positive, z1 exists) and z2� y, x2y + (1� y) (as the latter

quantities must all be positive, z2 exists). The equalities in Lemma 2.3 arise

from the following scheme of probability assignments:

P0 0 0 h^ e1 ^ e2ð Þ ¼
z1x1

yx1+ 1� yð Þ

� �
z2x2

yx2+ 1� yð Þ

� �
y;

P0 0 0 h^ e1 ^:e2ð Þ ¼
z1x1

yx1+ 1� yð Þ

� �
1�

z2x2

yx2+ 1� yð Þ

� �
y;

P0 0 0 h^:e1 ^ e2ð Þ ¼ 1�
z1x1

yx1+ 1� yð Þ

� �
z2x2

yx2+ 1� yð Þ

� �
y;

P0 0 0 h^:e1 ^:e2ð Þ ¼ 1�
z1x1

yx1+ 1� yð Þ

� �
1�

z2x2

yx2+ 1� yð Þ

� �
y;

P0 0 0 :h^ e1 ^ e2ð Þ ¼
z1

yx1+ 1� yð Þ

� �
z2

yx2+ 1� yð Þ

� �
1� yð Þ;

P0 0 0 :h^ e1 ^:e2ð Þ ¼
z1

yx1+ 1� yð Þ

� �
1�

z2

yx2+ 1� yð Þ

� �
1� yð Þ;

P0 0 0 :h^:e1 ^ e2ð Þ ¼ 1�
z1

yx1+ 1� yð Þ

� �
z2

yx2+ 1� yð Þ

� �
1� yð Þ;

P0 0 0 :h^:e1 ^:e2ð Þ ¼ 1�
z1

yx1+ 1� yð Þ

� �
1�

z2

yx2+ 1� yð Þ

� �
1� yð Þ:

Suppose there exist x1, x2 2 Df such that x1> x2 and f(x1)� f(x2). Then,

by Lemma 2.3 and the definition of Df, there exist h, e1, e2 2 Lc and P 000 2 P

such that P 000(e1jh)/P 000(e1j:h)¼x1 and P 000(e2jh)/P 0 00(e2j:h)¼ x2. By the

probability calculus, if the latter equalities hold, then P 0 00(hje1)>P 000(hje2).

Thus, there exist h, e1, e2 2 Lc and P 000 2 P such that CP0 0 0(h, e1)¼

f(x1)� f (x2)¼CP0 0 0(h, e2) even if P 000(hje1)>P 0 00(hje2), contradicting A1.

Conversely, A1 implies that, for any x1, x2 2 R+
[ {0}, if x1>x2 then

f(x1)> f(x2). By a similar argument, A1 also implies that, for any x1, x2 2

R+
[ {0}, if x1¼x2 then f(x1)¼ f(x2). So, for A1 to hold, it must be that,

for any h, e 2 Lc and any P 2 P, CP(h, e)¼ f(P(ejh)/P(ej:h)) and f is a

strictly increasing function. «
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